

Deliverable 7.2
Search Component Benchmark

Autoren: Caglar Demir
Reviewer: Adrian Wilke

Veröffentlichung Öffentlich
Fälligkeitsdatum 31.12.2019
Fertigstellung 14.04.2020
Arbeitspaket AP7
Typ Bericht
Status final
Version 1.0

Kurzfassung:
In diesem Deliverable wird die Durchführung eines Benchmarks der Datenhaltungslösungen
Elasticsearch und dem RDF Triplestore Apache Fuseki beschrieben. Der empirische Vergleich
der Laufzeiten zeigt, dass die neu eingesetzte Software Elasticsearch performanter als der
vormals verwendete RDF Triplestore ist. Die durchgeführten Tests der Laufzeitmessungen
ergeben einen Laufzeitgewinn des Faktors 20.

Schlagworte:
Benchmark, Elasticsearch, Apache Fuseki

D7.2 - Search Component Benchmark

Inhalt
Introduction 2

Preliminaries 2

Evaluation Setup 2

Results 3

Conclusion 3

References 5

1

D7.2 - Search Component Benchmark

1 Introduction
One of the primary goals of OPAL is to extract metadata of datasets from different catalogs and
ensure easy access to Open Data as specified in Deliverable D1.3 and D4.1. To attain such
non-trivial tasks, Deliverable D4.2 highlighted the importance of unifying multi formatted
datasets. In Deliverable D4.3, it has been shown that ensuring the accessibility of metadata
stored in the form of RDF triples entails efficient storage and retrieval of RDF data. To facilitate
efficient storage and retrieval, Deliverable D4.3 proposed to employ a novel RDF storage solution
based on Elasticsearch and empirically evaluated the performance of the proposed approach
with a state-of-the art approach (Virtuoso). In this work, we compare an RDF storage solution
based on Elasticsearch against Apache Jena Fuseki. Our empirical comparison shows that the
new storage solution used in OPAL outperforms Apache Jena Fuseki up to 20 factor faster w.r.t.
the runtime in seconds. In Section 2, we give a brief overview pertaining to Elasticsearch and
Apache Jena Fuseki. Following, we elucidate the evaluation setup in Section 3. Thereafter, we
evaluate the competing approaches in Section 4. Finally, we conclude our work in Section 5.

2 Preliminaries

2.1 ElasticSearch
Elasticsearch is a distributed search engine based on Apache Lucene that provides full-text
search engine over the stored data [1]. To provide fast querying over metadata of data sets,
Elasticsearch provides a full-text search and it is equipped with tools such as Kibana and Metrics
that enables system administrators to maintain the search system.

2.2 Apache Jena Fuseki
Apache Jena Fuseki is a SPARQL server that can either run as an operating system server, Java
web application as well as a standalone server [2]. In our work, we employ Apache Jena Fuseki as
a standalone server.

3 Evaluation Setup

3.1 Evaluation Scenario
We compare our data storage approach based on Elasticsearch against Apache Jena Fuseki. The
used datasets comprise 58,368 DCAT datasets in Elasticsearch and 57,008 in Fuseki. Additionally
to the datasets, DCAT distributions are included in the benchmark data. The difference of the
dataset sizes are a result of necessary preprocessing steps. The benchmark is required to test the
performance of simple queries for extraction to display the results at the user interface. To this
end, we construct SPARQL Queries [4] based on our previous work D4.3. By constructing the
SPARQL queries, we focus on the text queries as seen in Section 4. Next, we translate the
SPARQL queries into the domain specific language (DSL) formatted used in Elasticsearch [5].
After we obtain a set of queries for our approach and for Fuseki, we perform each query in our
approach and Fuseki. Performing a query consists of sending an HTTP request and receiving an
HTTP response. We evaluate the performance of an RDF Triplestore w.r.t. the time elapsed
between sending HTTP requests and receiving HTTP responses. To attain an empirical

2

D7.2 - Search Component Benchmark

comparison, we perform each query 100 times and report the average and the standard deviation
of the time elapsed between HTTP requests and responses.

3.2 Implementation, Software Versions and Hardware
We implement our evaluation scenario in Python 3.6.4. All experiments were carried out on a
virtual machine with Ubuntu 18.04, 16 GB RAM and four Intel Core i5-7300U CPU @2.60GHz
processors. OPAL Github repository contains the Python implementation of evaluation, the
third-party software components along with the software versions.

4 Results
We report the average and standard deviation of runtimes in seconds. Table 1 shows that our RDF
Triplestore based on Elasticsearch significantly outperforms Fuseki w.r.t the runtime
requirement. We perform each query 100 times in Elasticsearch and Fuseki and report the
average and the standard deviation of the runtimes. Runtime of Elasticsearch (respectively
Fuseki) denotes the time elapsed between sending HTTP requests and receiving HTTP responses.
Given that both approaches run as standalone servers on the same hardware, RDF Triple store
based on Elasticsearch outperforms Fuseki up to 20 factor. The outperformance of our approach
stems from a full-text search capability of Elasticsearch and mapping structure used in
Elasticsearch.

5 Conclusion
In this document, we evaluated the performance of the data storage solution used in OPAL
against the performance of Fuseki. Our data storage solution based on Elasticsearch outperforms
the Fuseki by up to factor of 20. The significant outperformance stems from Elasticsearch that
scales to large numbers of metadata of datasets (documents in the terminology of Elasticsearch)
while allowing flexible queries at retrieval of documents.

3

D7.2 - Search Component Benchmark

Query Elasticsearch Fuseki

SELECT (COUNT(distinct ?s) AS ?num)
WHERE
{ GRAPH ?g {?s a dcat:Dataset
 }
}

.030​ +- .002 .118 +-0.028

SELECT (COUNT(distinct ?s) AS ?num)
WHERE
{
 GRAPH ?g {
 ?s a dcat:Dataset .
 ?s dct:title ?o .
 FILTER isLiteral(?o)
 FILTER contains(STR(?o), "Berlin")
}}

.023​ +- .002 .349 +- .156

SELECT (COUNT(distinct ?s) AS ?num)
WHERE
{
 GRAPH ?g {
 ?s a dcat:Dataset .
 ?s dct:description ?o .
 FILTER isLiteral(?o)
 FILTER contains(STR(?o), "Baustelle")
}}

.023​ +- .002 .329 +- .058

SELECT (COUNT(distinct ?s) AS ?num) WHERE{
GRAPH ?g {
?s a dcat:Dataset .
 ?s dcat:keyword ?o .
 FILTER isLiteral(?o)
 FILTER contains(STR(?o), Bahnhof)}}

.240​ +- .002 1.234 +- .03564

SELECT (COUNT(distinct ?s) AS ?num)
WHERE
{
 GRAPH ?g {
 ?s a dcat:Dataset .
 ?s dct:description ?o .
 FILTER isLiteral(?o)
 FILTER contains(STR(?o), "Berlin Flughafen")
}}

.023​ +- .002 0.4635 +- .1547

Table 1: The runtime results of Elasticsearch and Fuseki.

4

D7.2 - Search Component Benchmark

6 References

[1] What is Elasticsearch? - Amazon Web Services:
https://aws.amazon.com/elasticsearch-service/what-is-elasticsearch/

[2] Apache Jena Fuseki Documentation
https://jena.apache.org/documentation/fuseki2/

[3] Search Component Benchmark repository
https://github.com/projekt-opal/Search-Component-Benchmark

[4] SPARQL Query Language
https://www.w3.org/TR/rdf-sparql-query/

[5] Query DSL
https://www.elastic.co/guide/en/elasticsearch/reference/7.6/query-dsl.html

5

https://aws.amazon.com/elasticsearch-service/what-is-elasticsearch/
https://jena.apache.org/documentation/fuseki2/
https://github.com/projekt-opal/Search-Component-Benchmark
https://www.w3.org/TR/rdf-sparql-query/
https://www.elastic.co/guide/en/elasticsearch/reference/7.6/query-dsl.html

