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ABSTRACT
This paper addresses an open challenge in educational data
mining, i.e., the problem of using observed prerequisite re-
lations among courses to learn a directed universal con-
cept graph, and using the induced graph to predict un-
observed prerequisite relations among a broader range of
courses. This is particularly useful to induce prerequisite
relations among courses from different providers (universi-
ties, MOOCs, etc.). We propose a new framework for in-
ference within and across two graphs—at the course level
and at the induced concept level—which we call Concept
Graph Learning (CGL). In the training phase, our system
projects the course-level links onto the concept space to in-
duce directed concept links; in the testing phase, the concept
links are used to predict (unobserved) prerequisite links for
test-set courses within the same institution or across insti-
tutions. The dual mappings enable our system to perform
an interlingua-style transfer learning, e.g. treating the con-
cept graph as the interlingua, and inducing prerequisite links
in a transferable manner across different universities. Ex-
periments on our newly collected data sets of courses from
MIT, Caltech, Princeton and CMU show promising results,
including the viability of CGL for transfer learning.

Categories and Subject Descriptors
I.2.6 [Learning]: Concept learning; Induction; Parameter
learning; I.5.2 [Design Methodology]: Pattern analysis;
Classifier design and evaluation

General Terms
Algorithms; Performance; Design; Experimentation; Theory

Keywords
Multi-scale directed graph learning; online education; trans-
fer learning; new inference algorithms
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1. INTRODUCTION
The large and growing amounts of online education data

present both open challenges and significant opportunities
for machine learning research to enrich educational offer-
ings. One of the most important challenges is to automat-
ically detect the prerequisite dependencies among massive
quantities of online courses, and to support decision mak-
ing such as curricula planning for students, and to support
course and curriculum design by teachers based on existing
course offerings. One example is to find a coherent sequence
of courses among MOOC offerings from different providers
that respect implicit prerequisite relations. A more specific
example would be a new student who just enters a univer-
sity for a MS or PhD degree. She is interested in machine
learning and data mining courses, but finds it difficult to
choose among many courses which look similar or with am-
biguous course titles to her, such as Machine Learning, Sta-
tistical Machine Learning, Applied Machine Learning, Ma-
chine Learning with Large Datasets, Scalable Analytics, Ad-
vanced Data Analysis, Statistics: Data Mining, Intermediate
Statistics, Statistical Computing, and so on. Taking all the
courses would imply taking forever to graduate, and possi-
bly waste a big portion of her time due to the overlapping
content. Alternately, if she wants to choose a small sub-
set, which courses should she include? How should she or-
der the courses without sufficient understanding about the
prerequisite dependencies? Often prerequisites are explicit
within an academic department but implicit across depart-
ments. Moreover, if she already took several courses in ma-
chine learning or data mining through Coursera or in her
undergraduate education, how much do those courses over-
lap with the new ones? Without an accurate representa-
tion about how course contents overlap with each other, and
how course ordering would affect the efficiency or difficulty
of learning by students, it is difficult to answer her ques-
tions. Universities solve this problem in the old-fashioned
way, via academic advisors, but it is not clear how to solve
it in MOOC environments or cross-university offerings where
courses do not have unique ID’s and not described in a
universally controlled vocabulary. Ideally, we would like to
have a universal graph whose nodes are canonical and dis-
criminant concepts (e.g. “convexity” or “eigenvalues”) being
taught in a broad range of courses, and whose links indicate
pairwise preferences in sequencing the teaching of these con-
cepts. For example, to learn the concepts of PageRank and
HITS, students should have already learned the concepts of
eigenvectors, Markov matrices and irreducibility of matri-
ces. This means directed links from eigenvectors, Markov
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Figure 1: The framework of two-scale directed graphs: The higher-level graphs have courses (nodes) with
perquisite relations (links). The lower-level graph consists of universal concepts (nodes) and pairwise pref-
erence in learning or teaching concepts. The links between the two levels are system-assigned weights of
concepts to each course.

matrices and irreducibility to PageRank and HITS in the
concept graph. To generalize this further, if there are many
directed links from the concepts in one course (say Matrix
Algebra) to the concepts in another course (say Web Mining
with Link Analysis as a sub-topic), we may infer a prereq-
uisite relation between the two courses. Clearly, having a
directed graph with a broad coverage of universal concepts
is crucial for reasoning about course content overlap and pre-
requisite relationship, and hence important for educational
decision making, such as curriculum planning by students
and modularization in course syllabus design by instructors.

How can we obtain such a knowledge-rich concept graph?
Manual specification is obviously not scalable when the num-
ber of concepts reaches tens of thousands or larger. Using
machine learning to automatically induce such a graph based
on massive online course materials is an attractive alterna-
tive; however, no statistical learning techniques have been
developed for this problem, to our knowledge. Addressing
this open challenge with principled algorithmic solutions is
the novel contribution we aim to accomplish in this paper.
We call our new method Concept Graph Learning (CGL).
Specifically, we propose a multi-scale inference framework
as illustrated in Figure 1, which consists of two levels of
graphs and cross-level links. Generally, a course would cover
multiple concepts, and a concept may be covered by more
than one course. Notice that the course-level graphs do not
overlap because different universities do not have universal
course IDs. However, the semantic concepts taught in differ-
ent universities do overlap, and we want to learn the map-
pings between the non-universal courses and the universal
concept space based on online course materials.

In this paper we investigate the problem of concept graph
learning (CGL) with our new collections of syllabi (includ-
ing course names, descriptions, listed lectures, prerequisite
relations, etc.) from the Massachusetts Institute of Technol-

ogy (MIT), the California Institute of Technology (Caltech),
the Carnegie Mellon University (CMU) and Princeton. The
syllabus data allow us to construct an initial course-level
graph for each university, which may be further enriched
by discovering latent pre-requisite links. As for represent-
ing the universal concept space, we study four representa-
tion schemes (Section 2.2), including 1) using the English
words in course descriptions, 2) using sparse coding of En-
glish words, 3) using distributed word embedding of English
words, and 4) using a large subset of Wikipedia categories.
For each of these representation schemes, we provide algo-
rithmic solutions to establish a mapping from courses to
concepts, and to learn the concept-level dependencies based
on observed prerequisite relations at the course level. The
second part, i.e., the explicit learning of the directed graph
for universal concepts, is the most unique part of our pro-
posed framework. Once the concept graph is learned, we can
predict unobserved prerequisite relations among any courses,
including those not in the training set and by different uni-
versities. In other words, CGL enables an interlingua-style
transfer learning as to train the models on the course ma-
terials of some universities and to predict the prerequisite
relations for the courses in other universities. The universal
transferability is particularly desirable in MOOC environ-
ments where courses are offered by different instructors in
many universities. Since universities do not have unified
course IDs, the course-level sub-graphs of different univer-
sities do not overlap with each other, and the prerequisite
links are only local within each sub-graph. Thus to enable
cross-university transfer, it is crucial to project course-level
prerequisite links in different universities onto the directed
links among universal concepts.

The bi-directional inference between the two directed graphs
makes our CGL framework fundamentally different from
existing approaches in graph-based link detection [16, 19,
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20], matrix completion [4, 9, 13] and collaborative filtering
[24]. That is, our approach requires explicit learning of the
concept-level directed graph and optimal mapping between
the two levels of links while other methods do not (see Sec-
tion 4 for more discussion).

Our main contributions in this paper can be summarized
as:

1. A novel framework for within- and cross-level infer-
ence of prerequisite relations at the course-level and
the concept-level directed graphs;

2. New algorithmic solutions for scalable graph learning;

3. New data collections from multiple universities with
syllabus descriptions, prerequisite links and lecture ma-
terials;

4. The first evaluation for prerequisite link prediction in
within- and cross-university settings.

The rest of the paper is organized as follows: Section 2
introduces the formal definitions of our framework and in-
ference algorithms; Section 3 describes the new data sets we
collected for this study and future benchmark evaluations,
and reports our empirical findings; Section 4 discusses re-
lated work; and Section 5 summarizes the main findings in
this study.

2. FRAMEWORK & ALGORITHMS

2.1 Notation
Let us formally define our methods with the following no-

tation.

• n is the number of courses in a training set;

• p is the dimension of the universal concept space (Sec-
tion 2.2;

• xi ∈ Rp for i = 1, 2, . . . , n are the bag-of-concepts
representation of a course in the training set;

• X is an n-by-p matrix where each row is x>i ;

• Y is an n-by-n matrix where each cell is the binary in-
dicator of the prerequisite relation between two courses,
i.e., yij = 1 means that course j is a prerequisite of
course i, and yij = −1 otherwise.

• A is a p-by-p matrix, whose elements are the weights
of directed links among concepts. That is, A is the
matrix of model parameters we want to optimize given
the training data in X and Y .

2.2 Representation Schemes
What is the best way to represent the contents of courses

to learn the universal concept space? We explore different
answers with four alternate choices as follows:

1. Word-based Representation (Word): This method
uses the vocabulary of course descriptions plus any
listed keywords by the course providers (MIT, Caltech,
CMU and Princeton) as the entire concept (feature)
space. We applied standard procedures for text pre-
processing, including stop-word removal, term-frequency
(TF) based term weighting, and the removal of the rare

words whose training-set frequency is one. We did not
use TF-IDF weighting because the relative small num-
ber of “documents” (courses) in our data sets do not
allow reliable estimates of the IDF part.

2. Sparse Coding of Words (SCW): This method pro-
jects the original n-dimensional vector representations
of words (the columns in the course-by-word matrix)
onto sparse vectors in a smaller k-dimensional space
using Non-negative Matrix Factorization [18], where k
is much smaller than n. One can view the lower di-
mensional components as the system-discovered latent
concepts. Intrigued by the successful application of
sparse coding in image processing [11], we explored its
application to our graph-based inference problem. By
applying the algorithm in [14] to our training sets we
obtained a k-dimensional vector for each word; by tak-
ing the average of word vectors in each course we ob-
tained the bag-of-concept representation of the course.
This resulted in an n-by-k matrix X, representing all
the training-set courses in the k-dimensional space of
latent concepts. We set k = 100 in our experiments
based on cross validation.

3. Distributed Word Embedding (DWE): This method
also uses dimension-reduced vectors to represent both
words and courses, similar to SCW. However, the lower
dimensional vectors for words are discovered by multi-
layer neural networks through deep learning, based on
word usage w.r.t contextual, syntactic and semantic
information [17, 21]. Intrigued by the popularity of
DWE in recent research in Natural Language Process-
ing and other domains [6, 5], we explored its appli-
cation to our graph-based inference problem. Specif-
ically, we deploy DWE trained on Wikipedia articles
by Rami et al. [1], in a domain which is semantically
close to that of academic courses.

4. Category-based Representation (Cat): This method
used a large subset of Wikipedia categories as the con-
cept space. We selected the subset via a pooling strat-
egy as follows: We used the words in our training-set
courses to form 3509 queries (one query per course),
and retrieved the top 100 documents per query based
on cosine similarity. We then took the union of the
Wikipedia category labels of these retrieved documents,
and removed the categories which were retrieved by
only three queries or less. This process resulted in a to-
tal of 10,051 categories in the concept space. The cat-
egorization of courses was based on the earlier highly
scalable very-large category space work reported in
[10]: the classifiers were trained on labeled Wikipedia
articles and then applied to the word-based vector rep-
resentation of each course for (weighted) category as-
signments.

Each of the above representation schemes may have its own
strengths and weaknesses. Word is simple and natural but
rather noisy, because semantically equivalent lexical variants
are not unified into canonical concepts and there could be
systematic vocabulary variation across universities. Also,
this scheme will not work in cross-language settings, e.g.,
if courses descriptions are in English and Chinese. Cat
would be less noisy and better in cross-language settings,
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but the automated classification step will unavoidably in-
troduce errors in category assignments. SCW (sparse cod-
ing of words) reduces the total number of model parame-
ters via dimensionality reduction, which may lead to robust
training (avoiding overfitting) and efficient computation, but
at the risk of losing useful information in the projection
from the original high-dimensional space to a lower dimen-
sional space. DWE (distributed word embedding) deploys
recent advances in deep learning of word meanings in con-
text. However, reliable word embedding require the avail-
ability of large volumes of training text (e.g., Wikipedia ar-
ticles); the potential mismatch between the training domain
(for which large volumes of data can be obtained easily)
and the test domain (for which large volumes of data are
hard or costly to obtain) could be a serious issue. Yet an-
other distinction among these representation schemes is that
Word and Cat produce human-understandable concepts and
links, while SCW and DWE produce latent factors which
are harder to interpret by humans.

By exploring all the four representation schemes in our
unified framework for two-level graph based inference, and
by examining their effectiveness in the task of link prediction
of prerequisite relations among courses, we aim to obtain a
deeper understanding of the strengths and weaknesses of
those representational choices.

2.3 The Optimization Methods
We define the problem of concept graph learning as a

key part of learning-to-predict prerequisite relations among
courses, i.e., for the two-layer statistical inference we intro-
duced in Section 1 with Figure 1. Given a training set of
courses with a bag-of-concepts representation per course as
a row in matrix X, and a list of known prerequisite links per
course as a row in matrix Y, we optimize matrix A whose
elements specify both the direction (sign) and the strength
(magnitudes) of each link between concepts. We propose
two new approaches to this problem: a classification ap-
proach and a learning-to-rank approach. Both approaches
deploy the same extended versions of SVM algorithms with
squared hinge loss, but the objective functions for optimiza-
tion are different. We also propose a nearest-neighbor ap-
proach for comparison, which predicts the course-level links
(prerequisites) without learning the concept-level links.

2.3.1 The Classification Approach (CGL.Class)
In this method, we predict the score of the prerequisite

link from course i to course j as:

ŷij = fA (xi, xj) = x>i Axj (1)

The intuition behind this formula is shown in Figure 2. It
can be easily verified that the quantity x>i Axj is the sum-
mation of the weights of all the paths from node i to node j
in this graph, where each path is weighted using the product
of the corresponding xik, Akk′ and xjk′ .

The criterion for optimizing matrix A given training data
xi for i = 1, 2, . . . , n and true labels yij for all course pairs
is defined as:

min
A

∑
i,j

(
1− yij

(
x>i Axj

))2
+

+
λ

2
‖A‖2F (2)

where (1− v)+ = max(0, 1− v) denotes the hinge function,
and ‖ · ‖F is the matrix Frobenius norm. The 1st term in

Figure 2: The weighted connections from course i
to course j via matrix A which encodes the directed
links between concepts

formula 2 is the empirical loss; the 2nd term is the regular-
ization term, controlling the model complexity based on the
large margin principle. We choose to use the squared hinge
loss (1 − v)2+ the first term to gain first-order continuity of
our objective function, enabling efficient computation using
accelerated gradient descent [22, 23]. This efficiency im-
provement is crucial because we operate on pairs of courses,
and thus have a much larger space than in normal classifi-
cation (e.g. classifying individual courses).

2.3.2 The Learning-to-Rank Approach (CGL.Rank)
Inspired by the learning-to-rank literature [12], we ex-

plored going beyond the binary classifier in the previous
approach to one that essentially learns to rank prerequisite
preferences. Let Ωi be the set of course pairs with the true
labels yij = 1 for different j’s, and Ω̄i the pairs of courses
with the true labels yij = −1 for different k’s, we want our
system to give all the pairs in Ωi higher score than that of
any pair in Ω̄i. We call this the partial-order preference over
links conditioned on course i. Let T be the union of tuple
sets {(i, j, k)|(i, j) ∈ Ωi, (i, k) ∈ Ω̄i} for all i in 1, 2, . . . , n.
We formulate our optimization problem as:

min
A

∑
(i,j,k)∈T

(
1−

(
x>i Axj − x>i Axk

))2
+

+
λ

2
‖A‖2F

Or equivalently, we can rewrite the objective as:

min
A

∑
(i,j,k)∈T

(
1−

((
XAX>

)
ij
−
(
XAX>

)
ik

))2

+

+
λ

2
‖A‖2F

Solving this optimization problem requires us to extend stan-
dard packages of SVM algorithms in order to improve com-
putational efficiency because the number of model parame-
ters (p2) in our formulation is very large. For example, with
the vocabulary size of 15,396 words in the MIT dataset, the
number of model parameters is over 237 million. When p
(the number of concepts) is much larger than n (the number
of courses), one may consider solving this optimization prob-
lem in the dual space instead in the primal space. However,
even in the dual space, the number of variables is still O(n3),
corresponding to all the tuples of i, j, k ∈ {1, 2, . . . , n}, and
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the kernel matrix is on the order of of O(n6). We address
these computational challenges in Section 2.4.

2.3.3 The Nearest-Neighbor Approach (kNN)
Different from the two approaches above where matrix A

plays a central role, as a different baseline, we propose to
predict the prerequisite relationship for any pair of courses
based on matrix X and Y but not A. Let (u, v) be a new
pair of courses in the test set, and xu and xv be the bag-of-
concept representations of u and v, respectively. We score
each pair (i, j) in the training set as:

ŷij =
(
x>u xi

)
×
(
x>v xj

)
∀i, j = 1, 2, . . . , n

By taking the top pairs in the training set and by assigning
the corresponding yi,j to the new pairs, we perform the k-
nearest neighbor computation. If we normalize the vectors,
the dot-products in the above formula become the cosine
similarity. This approach requires nearest-neighbor search
on-demand; when the number of course pairs in the test set
is large, the online computation would be substantial.

Via cross validation, we found that k = 1 (1NN) works
best for this problem on the current data sets.

2.4 Scalable Algorithms
As we have pointed out in Section 2.3.2 , the p2 model pa-

rameters in matrix A and the n3 constraints make the op-
timization of CGL.Rank computationally challenging. No
standard optimization packages can be applied for large p
and n. We address this problem by reformulating the ob-
jective in a way that the true number of model parameters
reduces to O(n2).

Recall that our original objective (Section 2.3.2) is:

min
A∈Rp×p

∑
(i,j,k)∈T

`
(
Ŷij − Ŷik

)
+
λ

2
‖A‖2F s.t. Ŷ = XAX>

(3)

where Ŷ is n-by-n, the matrix of the predicted course-level
links. A is a p-by-p matrix of the induced concept-level links
(weighted). `(v) = (1−v)2+ is the squared hinge loss. Denote
the optimal solution of (3) by A∗, we are going to show that
this solution can always be written as A∗ = X>BX some
n-by-n (n� p) matrix B.

We argue thatA∗ must be identical to the optimal solution
of the following problem:

min
A∈Rp×p

‖A‖2F s.t. XAX> = XA∗X> := Ŷ ∗ (4)

Otherwise, the solution for (4) will lead to the same loss
as A∗ in (3) but a smaller regularization penalty, which is
contradictory to our assumption that A∗ is the optimal so-
lution for (3). Notice that (4) is just the matrix version of
the minimum norm problem for an underdetermined linear
system (because p2 > n2), which has a closed-form solution
[2, 3, 8] as below:

A∗ = X>K−1Ŷ ∗K−1X (5)

where K = XX>. By defining B := K−1Ŷ ∗K−1, we have
Ŷ ∗ = KBK and A∗ = X>BX. Hence the regularization in
(3) becomes

‖A‖2F = tr
(
AA>

)
= tr

(
X>BXX>B>X

)
= tr

(
XX>BXX>B>

)
= tr

(
Ŷ B>

)

and (3) can be rewritten as an optimization w.r.t B which
only involves O

(
n2
)

variables:

min
B∈Rn×n

∑
(i,j,k)∈T

`
(
Ŷij − Ŷik

)
+
λ

2
tr
(
Ŷ B>

)
s.t. Ŷ = KBK

(6)
The substantially reduced number of parameters in (6) al-
lows us to efficiently compute the gradient even for extremely
large p2 (by reducing the per-iteration cost). Moreover, the
smoothness of our objective function enables us to deploy
Nestrerov’s accelerated gradient descent [22, 23], ensuring a
convergence rate in the order of t−2 where t is the number
of steps, i.e., the reduced number of iterations.

2.5 Algorithm Implementation
The gradient for (6) w.r.t B is given by

−2K

 ∑
(i,j,k)∈T :δijk>0

ei (ej − ek)> δijk

K + λŶ

here δijk = 1−
(
Ŷij − Ŷik

)
, Ŷ = KBK and ei, ej , ek are all

unit vectors. The detailed implementation of the accelerated
gradient descent is summarized in Alg. 1.

Algorithm 1 Concept Graph Learning

1: procedure CGL.Rank(X,T, λ, η)
2: K ← XX>

3: t← 1, B ← 0, Q← 0
4: while not converge do
5: ∆← 0
6: Ŷ ← KBK
7: for (i, j, k) in T do

8: δijk ← 1−
(
Ŷij − Ŷik

)
9: if δijk > 0 then

10: ∆ij ← ∆ij + δijk
11: ∆ik ← ∆ik − δijk
12: P ← B − η

(
λŶ − 2K∆K

)
13: B ← P + t−1

t+2
(P −Q)

14: Q← P
15: t← t+ 1

16: A← X>BX
17: return Ŷ , A

3. EXPERIMENTS

3.1 Data and Metrics
We collected course listings, including course descriptions

and available pre-requisite structure from MIT, Caltech, CMU
and Princeton1. The first two were complete course cata-
logs, and the latter two required spidering and scraping, and
hence we collected only Computer Science and Statistics for
CMU, and Mathematics for Princeton. This implies that
we can test within-university prerequisite discovery for all
four—though MIT and Caltech will be most comprehensive—
and cross university only pairs where the training university
contains the disciplines in the test university.

Table 1 summarizes the datasets statistics.

1The datasets are available at
http://nyc.lti.cs.cmu.edu/teacher/dataset/
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Table 1: Datasets Statistics
University # Courses # Prerequisites # Words

MIT 2322 1173 15396
Caltech 1048 761 5617
CMU 83 150 1955

Princeton 56 90 454

Table 2: Results of within-university prerequisite
prediction

Algorithm Data AUC MAP
CGL.Rank MIT 0.96 0.46
CGL.Class MIT 0.86 0.34

1NN MIT 0.76 0.30
CGL.Rank Caltech 0.95 0.33
CGL.Class Caltech 0.86 0.27

1NN Caltech 0.60 0.16
CGL.Rank CMU 0.79 0.55
CGL.Class CMU 0.70 0.38

1NN CMU 0.75 0.43
CGL.Rank Princeton 0.92 0.69
CGL.Class Princeton 0.89 0.61

1NN Princeton 0.82 0.58

To evaluate performance, we use the Mean Average Pre-
cision (MAP) which has been the preferred metric for in in-
formation retrieval for evaluating ranked lists, and the Area
Under the Curve of ROC (ROC/AUC or simply AUC) which
in popular in link detection evaluations.

3.2 Within-university Prerequisite Prediction
We tested all the methods on the dataset from each uni-

versity. We used one third of the data for testing, and the
remaining two thirds for training and validation. We con-
ducted 5-fold cross validation on the training two-thirds, i.e.,
trained the model on 80% of the training/validation data set,
and tuned extra parameters on the remaining 20%. We re-
peated this process 5 times with a different 80-20% spit in
each run. The results of the 5 runs were averaged in report-
ing results. Figure 3 and Table 2 summarize the results of
CGL.Rank, CGL.Class and 1NN. All the methods used the
English words as the representation scheme in this first set
of experiments. Notice that the AUC scores for all meth-
ods are much higher than the MAP scores. The high AUC
scores derive in large part from the fact that AUC gives
an equal weight to the system-predicted true positives, re-
gardless of their positions in system-produced ranked lists.
On the other hand, MAP weighs more heavily the true pos-
itives in higher positions of ranked lists. In other words,
MAP measures the performance of a system in a harder task:
Not only the system needs to find the true positives (along
with false positives), it also needs to rank them higher than
false positives as possible in order to obtain a high MAP
score. Using a more concrete example, a totally useless sys-
tem which makes positive or negative predictions at random
with 50% of the chances will have an AUC score of 50%.
But this system will have an extremely low score in MAP
because the change for a true positive to randomly appear
in the top of a ranked list will be low when true negatives
dominate in the domain. Our data sets are from such a
domain because each course only requires a very small num-

Table 3: CGL.Rank with four representations
Concept Data AUC MAP

Word MIT 0.96 0.46
Cat. MIT 0.93 0.36
SCW MIT 0.93 0.33
DWE MIT 0.83 0.09
Word Caltech 0.95 0.33
Cat. Caltech 0.93 0.32
SCW Caltech 0.91 0.22
DWE Caltech 0.76 0.12
Word CMU 0.79 0.55
Cat. CMU 0.77 0.55
SCW CMU 0.73 0.43
DWE CMU 0.67 0.35
Word Princeton 0.92 0.69
Cat. Princeton 0.84 0.68
SCW Princeton 0.82 0.60
DWE Princeton 0.77 0.50

ber of other courses as prerequisites. Back to our original
point, regardless the popularity of AUC in link detection
evaluations, its limitation should be recognized: the relative
performance among methods is more informative than the
absolute values of AUC.

As we can see in Figure 3, the relative ordering of the
methods in AUC and MAP are indeed highly correlated
across all the data sets. MAP emphasizes positive instances
in the top portion of each ranked list, and hence is more
sensible for measuring the usefulness of the system where
the user interacts with system-recommended prerequisite
lists. Comparing the results on all the methods, we see that
CGL.Rank dominates the others in both AUC and MAP on
most data sets.

3.3 Effects of Representation Schemes
Figure 4 and Table 3 summarize the results of CGL.Rank

with the four representation schemes, i.e., Word, Cat, SCW
(sparse coding of words) and DWE (distributed word em-
bedding), respectively. Again the scores of AUC and MAP
are not on the same scale, but the relative performance sug-
gest that Word and Cat are competitive with each other
(or Word is slightly better one some data sets), followed by
SCW and then DWE. In the rest of the empirical results
reported in this paper, we focus more on the performance of
CGL.Rank with Word as the representation scheme because
they perform better, and the space limit does not allow us
to present all the results for every possible permutation of
method, scheme, dataset and metric.

3.4 Cross-university Prerequisite Prediction
In this set of experiments, we fixed the same test sets

which were used in within-university evaluations, but we
alter the training sets across universities, yielding trans-
fer learning results where the models were trained with the
data from a different university than those where they were
tested. By fixing the test sets in both within- and cross-
university evaluations we can compare the results on a com-
mon basis. The competitive performance of Cat in compar-
ison with Word is encouraging, given that Wikipedia cate-
gories are defined as general knowledge, and the classifiers
(SVM’s) we used for category assignment to courses were
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Figure 3: Different methods in within-university prerequisite prediction: All the methods used words as
concepts.
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Figure 4: CGL.Rank with different representation schemes in within-university prerequisite prediction
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trained on Wikipedia articles instead of the course mate-
rials (because we do not have human assigned Wikipedia
category labels for courses). This means that the Wikipedia
categories indeed have a good coverage on the concepts be-
ing taught in universities (and probably MOOC courses),
and that our pooling strategy for selecting a relevant subset
of Wikipedia categories is reasonably successful.

Table 4 and Figure 5 show the results of CGL.Rank (us-
ing words as concepts). Recall that the MIT and Caltech
data cover the complete course catalogs, while the CMU
data only cover the Computer Science and Statistics, and
the Princeton data only over the Mathematics. This implies
that we can only measure transfer learning on pairs where
the training university contains the disciplines in the test
university. By comparing the red bars (when the training
university and the test university is the same) and the blue
bars (when the training university is not the same as the
test university), we see some performance loss in the transfer
learning, which is expected. Nevertheless, we do get trans-
fer, and this is the first report on successful transfer learning
of educational knowledge, especially the prerequisite struc-
tures in disjoint graphs, across different universities through
a unified concept graph. The results are therefore highly en-
couraging and suggest continued efforts to improve. Those
results also suggest some interesting points, e.g., MIT might
have a better coverage of the topics taught in Caltech, com-
pared to the inverse. And, MIT courses seem to be closer to
those in Princeton (Math) compared with those of CMU.

Table 4: CGL.Rank in within-university and cross-
university settings

Training Test MAP AUC
MIT MIT 0.46 0.96

Caltech MIT 0.13 0.88
Caltech Caltech 0.33 0.95

MIT Caltech 0.25 0.86
CMU CMU 0.55 0.79
MIT CMU 0.34 0.70

Caltech CMU 0.28 0.62
Princeton Princeton 0.69 0.92

MIT Princeton 0.46 0.72
Caltech Princeton 0.43 0.58

3.5 Experiment Details
We tested the efficiency of our proposed algorithms on a

single machine with an Intel i7 8-core processor and 32GB
RAM. On the largest MIT dataset with 981,009 training tu-
ples and 490,505 test tuples, it took 3.08 minutes for CGL.Rank
to reach a convergence rate of 1e-3 at 103 iterations with only
401MB memory. We also tested the effectiveness of using an
accelerated version of gradient descent. Without the accel-
eration, that is, when using the ordinary gradient descent
instead, it took 37.3 minutes and 1490 iterations to reach
the same objective value. CGL.Class is equally efficient as
CGL.Rank in terms of run time, though the latter is supe-
rior in terms of result quality. As for our 1NN baseline, it
took 2.88 hours since a huge number (2×981, 009×490, 505)
of dot-products need to be computed on the fly.
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Figure 5: CGL.Rank results in within-university
(red) and cross-university (blue) prerequisite pre-
diction

4. DISCUSSION AND RELATED WORK
Whereas the task of inferring prerequisite relations among

courses and concepts, and the task of inferring a concept
network from a course network in order to transfer learned
relations are both new, as are the extensions to the SVM
algorithms presented, our work was inspired by methods in
related fields, primarily:

In collaborative filtering via matrix completion the litera-
ture has focused on only one graph, such as a bipartite graph
of u users and m preferences (e.g. for movies or products).
Given some known values in the u-by-m matrix, the task is
to estimate the remaining values (e.g. which other unseen
movies or products would each user like) [24]. This is done
via methods such as affine rank minimization [9] that reduce
to convex optimization [3].

Another line of related research is transfer learning [7,
25, 26]. We seek to transfer prerequisite relations between
pairs of courses within universities to other pairs also within
universities, and to pairs that span universities. This is in-
spired by but different from the transfer learning literature.
Transfer learning traditionally seeks to transfer informative
features, priors, latent structures and more recently regular-
ization penalties [15]. Instead, we transfer shared concepts
in the mappings between course-space and concept-space to
induce prerequisite relations.

Although our evaluations primarily focus on detecting pre-
requisite relations among courses, such a task is only one
direct application of the automatically induced universal
concept graph. Other important applications include auto-
mated or semi-automated curriculum planning for personal
education goals based on different backgrounds of students,
and modularization in course syllabus design by instructors.
Both tasks require interaction between humans (students or
teachers) and the system-induced concept graph, and ex-
ploring options and optimal paths. How well can our sys-
tem support such a need? Although we do not have a for-
mal evaluation in that aspect in this paper, we believe that
of our system-induced links among concepts would be sug-
gestive and useful. The fact that CAT (i.e., the category-
based representation scheme) performs relatively well in our
evaluations gives some comfort, and visual inspection of the
inferred links at the concept level also supports that conclu-
sion, though with occasional errors, such as the one high-
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Table 5: Examples of linked Wikipedia categories in
our system-induced concept graph

1st Wikipedia Category Linked Wikipedia Category
“Partial differential equations” “Ordinary differential eqns.”
“Ethnography” “Geography”
“Extrasolar Planets” “Chaos Theory”
“British Industrial designers” “Graphic Design”

lighted in red in Table 5 below. The first column in the
table are examples of system-assigned Wikipedia categories
to courses in our data sets; the second column consists of the
linked Wikipedia categories with the higher weight (assigned
by our system) given each category in the first column, which
means that the concept in the 2nd-column should be taught
before the corresponding concept in the first column.

5. CONCLUDING REMARKS
We conducted a new investigation on automatically infer-

ring directed graphs at both the course level and the concept
level, to enable prerequisite prediction for within-university
and cross-university settings.

We proposed three approaches: a classification approach
(CGL.Class), a learning to rank approach (CGL.Rank), and
a nearest-neighbor search approach (kNN). Both CGL.Class
and CGL.Rank (deploying adapted versions of SVM algo-
rithms) explicitly model concept-level dependencies through
a directed graph, and support an interlingua-style transfer
learning across universities, while kNN makes simpler pre-
diction without learning concept dependencies. To tackle
the extremely high-dimensional optimization in our prob-
lems (e.g., 2 × 108 links in the concept graph for the MIT
courses), our novel reformulation CGL.Rank enables the de-
ployment of fast numerical solutions. On our newly col-
lected datasets from MIT, Caltech, CMU and Princeton,
CGL.Rank proved best under MAP and ROC/AUC, and
computationally much more efficient than kNN.

We also tested four representation schemes for document
content: using the original words, using Wikipedia cate-
gories as concepts, using a distributed word representation,
and using sparse word encoding. The first two: original
words and Wikipedia-derived concepts proved best. Our re-
sults in both the within-university and cross-university set-
tings are highly encouraging.

We envision that the cross-university transfer learning of
our approaches is particularly important for future applica-
tion to MOOCs where courses come from different providers
and across institutions, and there are seldom any explicit
prerequisite links. A rich suite of future work includes:

• Testing on cross-university or cross-course-provider pre-
requisite links. We have tested cross-university trans-
fer learning, but the inferred links are within each
target university, rather than cross-institutional links.
A natural extension of the current work is to pre-
dict cross-institutional prerequisites. For this kind of
evaluation we will need labeled ground truth of cross-
university prerequisites.

• Cross-language transfer. Using the Wikipedia cate-
gories and Wikipedia entries in different languages, it
would be an interesting challenge to infer prerequisite
relations for courses in different languages by mapping
to the Wikipedia category/concept interlingua.

• Extensions of the inference from single source to multi-
ple sources, from single media (text) to multiple media
(including videos), and from single granularity level
(courses) to multiple levels (including lectures).

• Deploying the induced concept graph for personalized
curriculum planning by students and for syllabus de-
sign and course modularization by teachers.
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