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ABSTRACT

Recommendation methods have mainly dealt with the problem
of recommending new items to the user while user visitation be-
havior to the familiar items (items which have been consumed
before) are little understood. In this paper, we analyze user ac-
tivity streams and show that user’s temporal consumption of fa-
miliar items is driven by boredom. Specifically, users move on to
a different item when bored and return to the same item when
their interest is restored. To model this behavior we include two
latent psychological states of preference for items - sensitization
and boredom. In the sensitization state the user is highly engaged
with the item, while in the boredom state the user is disinterested.
We model this behavior using a Hidden Semi-Markov Model for
the gaps between user consumption activities. We show that our
model performs much better than the state-of-the-art temporal
recommendation models at predicting the revisit time to the item.
Moreover, we attribute two main reasons for this: (1) recom-
mending items that are not in the bored state for the user, (2)
recommending items where user has restored her interests.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Filtering; H.2.8 [Database Management|: Database Ap-
plications - Data Mining

General Terms

Algorithms, Experimentation, Human Factors, Measurement

Keywords

Dynamic Preferences; Boredom; Temporal Recommender
Systems; Activity Streams

1. INTRODUCTION

“Boring 1is the right thought at the wrong time”
- Jack Gardner, Words Are Not Things
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Recommendation systems are portals to the world of in-
formation, as they facilitate and control users interactions
with content. The success of these recommendation systems
directly depends on the quality of user engagement. The ex-
isting internet platforms (such as Last.fm, Netflix.com) al-
low users to engage with two types of items in a session: new
and familiar. For instance, in the Last.fm music dataset®,
on average 23% of a user’s interactions are with the new
items and the rest are with the familiar items. However,
most of the existing models [27, 28, 17, 38, 16, 30, 37, 8,
32] deal only with the recommendation of new items to the
user, while understanding user consumption choices for the
familiar items remains mostly unexplored.

Changing preferences cause the user interest in familiar
items to be sensitive to time. Existing temporal models [39,
26, 6, 11, 29, 24] have largely focused on predicting future
rating value for a user-item pair using time dynamics. A
popular approach is to use time decaying functions to char-
acterize the rating behavior of the user over time [11]. Oth-
ers estimate the temporal interest of a user for a partic-
ular item by combining the user, item and time (latent)
factors [27, 17]. While these methods are time-sensitive, un-
derstanding the temporal dynamics of user behavior is not
their main focus. More specifically, they do not answer the
question, “When the user would visit, revisit or engage with
an item?”, rather they answer “What is the rating of the
user-item pair in future?”. As a result, such methods do not
adequately adapt to the temporal patterns in users engage-
ment with items.

In this work, we model the time-gap between successive
consumption activities of a user in the activity stream by
specifically focusing on the psychological state of boredom.
Users often get bored with a particular item they were en-
gaging with before and move on to a different item of inter-
est. This is similar to an user listening to a single song mul-
tiple times or watching multiple movies from a single genre
and then switching to a different album or movie genre af-
ter certain period of engagement. Mostly they return to the
original item of interest after a gap period. Such temporal
patterns in item consumption significantly impact recom-
mendation design for these systems.

The gap-behavior in activity streams is governed by two
important content consumption characteristics: (1) user is
definitely not interested in an item she is bored of (despite
its popularity and her own past interest) and (2) user may
revisit the item, if her interest is restored. This is an impor-
tant observation in consumer research in order to understand

1See experiments section for more details



the changing consumer preferences [31, 14]. We extend this
idea further using behavioral psychology to represent these
characteristics as two important states of user behavior [12]:
sensitization and boredom. In the sensitization state the
user is highly engaged with the item, while in the boredom
state the user is disinterested. The activity gap character-
izes these two states in a most natural way. In the sensitized
state the activity gaps are quite small as the user actively
revisits the item and in the boredom state the gap is rel-
atively large. The duration in each state and gap lengths
may vary depending on the user and item characteristics.
Surprisingly, most of the related work assume that the
popular and well rated items by the user are good choices
for recommendation. These models completely ignore the
fact that the user may get bored of these recommendations,
despite her past interactions. We perform several experi-
ments in this paper to confirm that sensitization and bore-
dom states exist in user activity streams. Moreover, we show
that such behavioral models can predict the revisit time
more accurately than existing state-of-the-art techniques.

1.1 Contributions and Organization

We explicitly model user latent psychological states, sen-
sitization and boredom, using a Hidden Semi-Markov Model
(HSMM) and use the model to predict the the gap between
user activities. The model works in an online manner which
is well-suited for activity streams. Furthermore, our model
is flexible enough to compute a preference score for items
as a function of time. We use this flexibility to propose a
STiC recommender that ranks familiar items based on the
dynamic preference score. Our model is found to be better
suited for the recommending task than several state-of-the-
art baselines [25, 36, 11, 26, 9].

There are three important results shown in this work. Ex-
isting time-sensitive recommendation models are good at
predicting ratings for the future, but do not perform well
in predicting the revisit time of the user. We demonstrate
through our model and experiments that activity streams
exhibit two important psychological states of user behavior:
sensitization and boredom. Moreover, to the best of our
knowledge, this is the first work that talks about modeling
gap between user activities using latent psychological states
to understand the dynamics of user’s consumption behavior.

The paper is organized as follows. In the remainder of
this section we discuss the related work. In section 2, we
discuss the temporal content consumption behavior using
the semi-markov model. We describe the the dataset and
the details of the model estimation process in section 3. We
also validate our model by comparing our approach to sev-
eral variants in this section. Followed in section 4 we evalu-
ate our approach on a recommendation task and compare it
against popular baselines, such as SVD++, TimeSVD++,
Tensor-ALS, and Restricted Boltzmann Machine (RBM).
We present the conclusion in section 5.

1.2 Related Work

The problem of recommending interesting items to users
based on their history of past ratings and user profile has
been well-studied for a few decades now. Some of these
approaches take advantage of historical ratings and are re-
ferred to as “Collaborative filtering” methods [38, 16, 30,
37]. While the other that make use of the user-profile at-
tributes are called “Content-based filtering” techniques [35,
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32]. There are several approaches that combine these tech-
niques and are referred to as “Hybrid” [8, 32]. There are
many survey articles [33, 1] that discuss a variety of these
approaches. The recommendation problem can be mapped
to a standard classification setting, hence latent factor mod-
els [27, 17] and dimensionality reduction techniques are also
applied. As these problems can be treated as matrix com-
pletion problems, matrix factorization [27] based models are
also quite widely used.

There are several recent related works that discuss the im-
portance of understanding the changing user interests over
time [39, 26, 6, 11, 29, 24]. Most of these penalize the ob-
jective or use a corrective scheme for accommodating the
changing preferences, rather than explicitly modeling them.
Many temporal models for recommendation were designed
to detect drifts in users interests and altered their algorithms
accordingly [6, 26]. Other methods, have used seasonality
and trends [3] as additional context for segmenting the user
ratings. There are also tensor factorization [9] approaches,
that extend the matrix factorization [41] techniques to in-
clude the temporal component.

There has also been some research on implicit feedback
data sets [18, 3]. However, most of these works do not ex-
plicitly model the user behavioral states which is essential,
as shown in this work, to estimate the user revisit time for
an item. Understanding future preferences is not specific
to recommender systems, and have received much interest
in several other fields, such as consumer research. The re-
lationship between repetition of a stimulus (such as food,
drinks, commodity items etc.) and its attractiveness has
been modeled using an inverted-U shaped function. This
relationship was used by McAlister to propose the dynamics
attribute satiation model of consumer choice applied to soft
drink consumption behavior [31]. More general consumer
choice models were later introduced which accommodated
either a short term loyalty for the last purchased brand or a
devaluation of the last purchased brand [4, 14, 19]. There
are also some recent progress on dynamic content consump-
tion analysis [2]. However, most of these approaches do not
model the explicit user behavioral states in estimating the
time-sensitive future preferences. Furthermore, several of
these consumer research approaches are based on question-
naires and surveys.

2. TEMPORAL CONTENT CONSUMPTION

We identify two types of temporal dependencies in the
consumption of items:

1. Reinforcing response: Systematic exploitation of our
recent choices aids our future decision making. As a
result, we find ourselves sticking to items such as listen-
ing to the same music bands again and again, watch-
ing the same kinds of movies and frequenting the same
types of restaurant etc. Consumer research scientists
have identified this effect as inertia or a short term
loyalty for the last purchased brand [20].

2. Devaluing response: Psychologists have associated repet-
itive exposures to stimuli with satiation and repul-
sion [15]. Stimulus satiation often produce shifts in
interests and other variety and novelty seeking behav-
ior [20]. Satiation is identified as a temporary phe-
nomenon which diminishes with time due to forget-
ting [15].
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Figure 1: Using observed gap sequence and censoring
variable for training a latent state model for item con-
sumption.

The reinforcing and devaluing response is closely associ-
ated to a user’s content consumption behavior in activity
streams [21]. In this work, we model these two response
characteristics with psychological preference states of sensi-
tization and boredom. An item in the sensitization state
is consumed rapidly with small gaps between its succes-
sive consumptions. A longer time gap characterizes tem-
porary boredom with the item followed by forgetting. In
other words, these states characterize an overall likeness for
each item. An item with high likeness score takes longer to
devalue and recur earlier than an item with relatively low
likeness score.

We explicitly model these psychological states in this work.
We also characterize user’s preference for an item as a func-
tion of these psychological states using hazard functions
which we will discuss a bit later.

2.1 A Semi-Markov Model

The gaps between successive consumptions of an item help
us characterize the psychological preference states of the
users. We propose a latent state dynamic model for item
consumption to infer user preference states. We specifically
use a hidden semi-Markov model (HSMM) because of it’s
ability to model both the consumption gaps (emission dis-
tribution) and the time spend by an item in a particular
state (state duration distribution).

Let us consider an item i consumed by the user v at times

wi gyt t% where t% is the last consumption event for
the item in the observation period. The gap observations
g, gyt ... g% denote the time gap between the consump-
tion events, such that g ;3_1 —t¥ forx=1...(n—1)
and g% = T —t**, where T is time of the end of the observa-
tion period. The last gap length observation is incomplete
as we haven’t observed the next return for that item yet.
Such observations whose values are only known to be larger
than a certain value are said to be right censored and are
handled using a special status variable (6;*). The status
variable is set to O for censored observations and and is set
to 1 otherwise. It is important to handle censored observa-
tions while modeling duration data to prevent a bias towards
smaller durations [22]. The {g,}}* ., constitute the observ-
able output from the model. This is shown in Figure 1. For
simplicity, we drop the superscript ui and it is assumed, un-
less otherwise stated, that variables are always defined with
respect to a particular user and item.
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Figure 2: The hidden semi-markov model for gap length
sequence.

We include two latent psychological states in the model
to capture the states of Sensitization (S) and Boredom (B).
Each state is further associated with an emission density
distribution b, (and a cumulative distribution B,,) for the
next gap length g for m € {S, B}. More formally, b (g)
P(G = g|m), where P(.) is a state-conditioned distribution
on gap-length random variable (G). The likelihood of an
observed output {g,d} for a state m can be computed as:
P({g,0}m) = (1 —0) *bm(g) + 6 x (1 — Bm(g)). Here, the
likelihood for a data which is not censored is the probability
density function b,,(g), while the likelihood of a censored
data is equal to the probability of P(G > g) = (1 — B (g))-

The semi-markov model allows us to explicitly model state
durations, which is the time an item spends in a particular
state before transitioning to another state. We denote the
duration density distribution by pm, (D = d), where D is the
duration random variable. Figure 2 displays the discussed
parameters of our model. We model log(G) (rather than G)
to include non-linearity in the perception of time [40]. A
parametric form is assumed for the emission and the state
duration distributions: b, (log(g)) = Log-logistic(tm, om))
and pm(d) = Gamma(@m,fm). Our choice of parametric
form allows us to capture time dependence characteristics of
our data discussed further in section 3.3. The complete set
of model parameters include A = (A4, 7, by (g), pm(d)), where
7 denotes the initial state probability distribution over m
latent states and A denotes the transition probability matrix
between those states. For our model with two latent states
A(m,n) =1 for m # n and 0 otherwise.

2.2 Prediction

Given the model parameters, and the observed gap se-
quence, we an use the HSMM model to track the past pref-
erence states of the user and make predictions about her
future behavior. A good reference for the estimation and
inference methodologies for HSMM can be found here [43,
42]. In this subsection, we briefly describe the prediction
procedures relevant for our discussion.

At any point let t1...t, denote the observed consump-
tion events for an item, g;. (n,—1) denote the correspond-
ing gap length observations. The model parameters (X)
are estimated via maximum likelihood estimation using the
forward-backward algorithm [43]. Using inference, we can
compute a distribution for the latent states variables s;.. (n—1),
corresponding to the gap observations, using the entire ob-
served gap sequence, i.e. P(si|g1..(n-1),A) fori=1...(n—
1) using the forward-backward algorithm. A one-step looka-
head using the forward algorithm allows us to also predict
the distribution for the next latent state s, of the item.



For brevity, we denote this distribution as s, such that
sn(m) = P(sn = m|g1...(n—1),A). Since we have only two
states, §,(S) =1 — s.(B).

We compute the expected gap till the next consumption
of the item (E(Gn|g1...(n—1),A)) using the state conditioned
emission distributions as follows. The expectation of the
state emission distribution provides us the expected gap
length conditioned on the item state and model parame-
ters (E(G|m, \)). We then marginalize out the future state
variable using the next state distribution (s.) to compute
the expectation for the next gap length;

E(Gnlg1...(n=1), A) = 5a(S) *E(G|S, A) + 5a(B) * E(G|B, A) .
(1)
We further obtain a dynamic measure of item consump-
tion rate using techniques from survival analysis. Survival
analysis [23, 13] is a field of statistics which deals with dura-
tion data, such as the time of occurrence of an event, referred
to as death. A hazard function is used to compute a tempo-
ral measurement of the event rate conditioned on survival
until or beyond a certain time computed as follows:

f(@)
1-F{)

h(t) = P(T = t|T >=1t) = (2)

where, f and F are the probability density and cumulative
distributions. We use the hazard function for the gap length
variable to capture the instantaneous rate of an item’s con-
sumption given the time since it’s last consumption (t — ¢, );
ie. P(Gn = (t —tn)|Gn >= (t — tn)|g1...(n-1), A). The haz-
ard function can be directly associated with a user’s pref-
erence for the item, which provides us a unique mechanism
for quantifying user’s dynamic preference (DP).

However, here again, we have direct access to the state
condition gap distribution, rather than the gap distribution.
Hence, the state conditioned dynamic preference score for
some time t > t,, is computed as,

b (t — tn)

DP(tm,A) = =5 =y

®3)
Furthermore, marginalizing over the predicted state distri-
bution for the future state (s,) provides us the dynamic
preference score for time t given model parameters and the
observed gap sequence as follows:

DP(t‘gl(nfl)y )‘)
5u(S) # bs(t — tn) + a(B) b (t — tn)

6n(S) % (1 — Bs(t —tn)) +sn(B) % (1 — Bp(t — tn))(4')

3. EXPERIMENT SETUP

We apply our HSMM model of item consumption to mu-
sic listening data. The domain of music is particularly well
suited for our analysis, with repetition naturally occurring
even at the song level. For other types of domains (e.g.
movies, books, clothes, holiday destinations), repetitive be-
havior emerges at a higher level of abstraction such as by
defining similarity clusters on the attributes of the items
(genre, trend, categories etc.).

3.1 Data

We use a public dataset from the popular music service
Last.fm [7] that contains the complete music listening histo-
ries of around 1000 users as recorded until May, 2009. This is
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also the only publically available dataset, to our knowledge,
that provides the comprehensive listing of users choices dur-
ing a period of time. The dataset contains the song name,
the artist name and the timestamp for the different songs
the user listened to during this period.

We construct our dataset using a subset of the data com-
prising the first four months of listening activities for each
user. Of this dataset, the first 3 months is used for training
and the fourth month is used for testing purposes. During
this period a user is seen to listen to multiple songs over
time. Her listening activity is further broken down into ses-
sions where a session is defined as a continuous stream of
listening activity interrupted by only small pauses. Based
on visual examination and with the intention of accommo-
dating most of the listening activity of a day in one session,
we use 6 hours as the threshold on the gap between two
songs for terminating the session. We use these sessions as
the unit of time throughout our discussion. Hence, an item
consumption at time ¢ for a user corresponds to her listening
to the corresponding song in the t-th session.

For each user a set of familiar (I*) is identified and in-
cludes those which have been consumed at least three times
during the training period. The training and test data is
filtered to remove all users which have less than 10 familiar
items. Table 1 summarizes the basic statistics for the final
training and testing dataset used for our experiments.

No of users 687
Training Data Mean no of familiar 294
items per user
Mean number of ses- 63
sions per user
Test Data No of users 593
Mean number of ses- o5
sions per user
Mean number of famil-
iar items consumed per | 14
session

Table 1: Dataset statistics.

3.2 Clustering

In Figure 3, we show the cumulative distribution of the
number of repeat consumptions of an item in the training
period. More than 90% of user-items have fewer than 10
repetitions making it difficult to obtain a statistical estimate
of a separate HSMM model for each user-item pair. Instead,
we cluster the user-item pairs and train a separate HSMM
model for each cluster. The average rate of consumption or
likeness score f, as defined below, is used for clustering.

’I’Lt

oty —t1 €

()

where, n' is the total number of item consumptions during
the training period, t1 and t,: is the time of the first and
last item consumption during the training period. The con-
stant € is the minimum time period over which the average
consumption rate is computed.

We consider two approaches for clustering user-item pairs
based on the likeness score - equal interval binning and
k-means clustering. We further consider different number
of clusters for partitioning the data. A large number of
clusters result in noisy and sparse clusters. On the other
hand, too few clusters overgeneralize the model. We set
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Figure 3: Cumulative distribution of the number of re-
peatitions of an item for the training data.

aside a validation dataset by removing a 30% random sam-
ple from the training data, and use this to evaluate the
clustering schemes and the number of clusters. The mod-
els are trained on the remaining training data. The per-
formance of a clustering scheme is measured using Root
Mean Squared Error (RMSE) between the predicted and
observed log-transformed gap length sequences in the vali-
dation dataset. The k-means clustering algorithm with 25
clusters is found to perform the best. Our analysis going
forward is based on these user-item clusters, and the corre-
sponding estimates of model parameters ..

3.3 Model Parameters

We now analyze the model parameters trained on our
dataset and discuss their relationships to the latent psycho-
logical states. We also show the existence of sensitization
and boredom states through our analysis.

Emission probability distributions Figures 4 (a) and
(b) show the emission probability distributions b, (log(g))
for the two latent states S and B, respectively. The prob-
ability distributions are plotted corresponding to each clus-
ters. The log-gap lengths are marked along the x-axis while
the y-axis indicates the index for the clusters which are or-
ganized in increasing order of likeness scores. The value of
the probability distributions (log transformed to highlight
the differences between the clusters) for a particular clusters
and gap length is indicated by a color. First we note that
the for the same cluster, the emission distribution is spread
across longer gap lengths for state B than state S. This jus-
tifies the nomenclature for the states as we expected items
in the sensitization states to be consumed faster than items
in the boredom state. Secondly, we find that items which
have a higher likeness score have shorter return cycles than
items with lower likeness score.

The hazard functions for the two states show significant
differences (Figure 4 (c¢) and (d)). As before, the hazard
functions are plotted for log-gap lengths along the x-axis for
each cluster, and the different clusters are organized along
the y-axis in increasing order of likeness score. For the state
S, items have declining hazard function which indicates that
the event rate decreases with log-time. On the other hand,
the hazard function for the state B gradually increases and
then declines. Such a uni-modal shape of the hazard func-
tion indicates a peak rate of occurrence at a particular log-
time and fits well with our boredom hypothesis. This is the
main reason for our choice of log-logistic distribution that
fits well both a declining and a uni-modal hazard function.

State duration distributions Figure 5 shows the state
duration distributions and the hazard functions for the state
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duration for the latent states S and B. The state duration
length is marked on the x-axis, while the y-axis indicates
the clusters. The color is used to denote the magnitude of
the log-transformed probability distribution and the hazard
functions. First, we find that clusters with lower likeness
scores have a shorter dwell time in the sensitization state
and longer dwell time in the boredom state than clusters
with higher likeness scores. Secondly, the hazard has an in-
creasing shape for both the states which indicates that the
rate of moving out of the state increases with time spent
in the state. This indicates that items in the sensitization
state eventually devalue while those in the boredom state
eventually return to the sensitization states when user pref-
erences recover. The gamma distribution allows an increas-
ing/declining hazard function and provides an adequate fit
for the temporal dynamics of the state transitions.

3.4 Relaxing Modeling Assumptions

We now consider several relaxations of our model (HSMM)
for item consumption and evaluate them at predicting the
gap sequences for the items in the dataset. The following
relaxations are considered:

1. HMM We use a Hidden Markov Model (HMM) to
model the timing of item consumption. As before, we
consider two latent states S and B and model the emis-
sion distributions for each state using a Log-logistic
distribution on the log-transformed gap length. The
HMM model assumes that the state durations are geo-
metrically distributed and are independent of the time
spent in the state. A transition matrix captures the
probability of transitioning between states. The com-
plete set of model parameters include A = (A, 7w, b (g)).

2. Loglogistic We do not model the temporal order in
the gap sequence. Instead gap lengths between item
consumptions are assumed to follow a Log-logistic dis-
tribution. Such a model picks up the predominant re-
cency based dynamics in the data producing a declin-
ing hazard function for the consumption event. The
complete set of model parameters include A = (u, o).

3. Exponential Consumption events are modeled to oc-
cur at a constant rate using an exponential distribu-
tion. The model parameters include A = (p).

All models are learnt using the training data for the same
frequency-based user-item clusters as described earlier, and
evaluated on the test data. The performance is measured us-
ing the prediction error on the log-transformed gap length
sequences in the test data using RMSE. The results are
summarized in Table 2. Our HSMM model performs sig-
nificantly better (p-value<107?) than all the other models
which illustrates the value achieved by the different compo-
nents of our model.

4. STiC RECOMMENDER

A temporal recommendation algorithm based on our item
consumption model is proposed and evaluated.

4.1 Design

Our HSMM model, as mentioned earlier, predicts the time
when an item would be consumed next based on the psycho-
logical state of the user. Further state and time based pref-
erence score for the item can be computed using (4). This
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RMSE on the
Model Test Data
HSMM 0.9791
HMM 1.0691
Loglogistic 1.1943
Exponential 1.1860

Table 2: RMSE scores on the log-transformed gap
length sequence

provides us valuable information for making time sensitive
recommendations to the users. We now propose the (STiC)
recommender which uses State and Time Conditioned pref-
erence scores for dynamically ranking items. The scores are
computed in an online manner for the next user session us-
ing her past consumption history and the cluster level model
parameters learnt from the training period (Ac).

4.2 Evaluation

There are certain challenges in evaluating a time-sensitive
recommendation based on the dynamic preferences of users.
Firstly, a direct assessment of an user’s temporal preference
is hard to obtain. For example, even when abundant explicit
feedback in terms of ratings for items are available, a user
rarely rates the same item repeatedly nor does the rating
correspond to the consumption preference at that time (as
the user may rate the item after arbitrary long time). As a
result, we base our model evaluation on actual consumption
choices resulting from an activity stream, as it reflects the
real-time interests of a user.

We compare our model against various popular static and
temporal recommendation methods. Both the training and
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the test data is transformed into a per user choice matrix
(C*) such that C*(i,t) = 1, if the item 4 is consumed during
the session ¢, 0 for all the items that are not consumed during
that session.

4.2.1 Metrics:

The standard RMSE metric meant for explicit rating data
is not applicable to our setup. We consider the following
metrics, well suited to implicit datasets [3, 18, 34], for eval-
uating our model and the comparison baselines. The metrics
have been modified to make the evaluation sensitive to time.

1. T-Precision, T-Recall and T-F; measures Im-
provements in RMSE scores provide little information
on the impact on user experience. Furthermore, since
users are generally only recommended a list of top K
items, more recently evaluation based on precision, re-
call and Fy have become popular [10]. We compare the
top-10 recommendation list generated by the model for
a user sessions against the actual items consumed by
the user in the sessions and compute the precision, re-
call and Fi. These scores are then averaged across all
user sessions in the test period.

. T-AUC The AUC scores measure the likelihood of
the recommender to rank preferred items over the not-
preferred items. We compute the average AUC score
across user sessions in the test period.

T-Rank The rank metric was recently proposed to
evaluate recommenders in the presence of implicit feed-
back [18]. The metric computes the expected per-
centile rank of an item selected during the test period
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in the recommender’s ranking list. For a temporal set-
ting, session specific rank scores are computed and av-
eraged across all users and session in the test period:

S O3, 1)  rank™ (1)
2w CUist) ’
where rank“‘(t) denotes the percentile rank of item i

in the ranked list of items generated for the user u for
the session ¢.

T-Rank =

(6)

It should be noted that for a recommender, higher values
of T-Precision, T-Recall, T-F}, and T-AUC scores and low
values of T-Rank scores are preferred.

4.2.2 Baselines:

We compare the STiC recommender against several state-
of-the-art static and temporal recommendation approaches.
Some of the approaches have been modified to work with
implicit activity data. We further use the validation dataset
to obtain the optimal parameters for the baselines.

1. Static The model computes a preference score vector
by computing the average number of time each item
was consumed per user session during the training pe-
riod. By definition this model is time-insensitive.

2. SVD++ Matrix factorization based approaches such
as Singular Value Decomposition (SVD) are known to
perform well when an explicit user-item ratings matrix
is known and prediction accuracy is evaluated using
RMSE on the user ratings [5]. The SVD++ model
is shown to perform better at top-K recommendations
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than basic SVD and is used for comparison. The im-
plicit data is converted into an explicit rating using
the complementary cumulative distribution of a user’s
item consumptions [3]. Items in the top 80-100% of
the distribution are given a rating of 5, those in the
60-80% are given a rating of 4 and so on.

. Restricted Boltzmann machines (RBM) Another

time-insensitive baseline includes RBM'’s, a two-layer
undirected graphical models used for collaborative fil-
tering process [36]. In this approach, a conditional
multinomial is used to model the columns of the ob-
served rating matrix and a conditional Bernoulli dis-
tribution is used for hidden user features. The rating
matrix used was same as the SVD++ baseline.

. Time-Weighted Previous research [11] have found

that incorporating time by time weighting user rat-
ings (usually using an exponential decay) such that
recent ratings are weighted more than old ratings leads
to performance improvements. Hence, we compare
our model against a time-weighted recommender that
computes a temporal preference score vector over the
items using an exponential moving average: P*(t) =
AU« PU(t—1)+(1-A")*xC"(t—1); P(1) = C(1) . Here
A" is the decay weight vector which is learnt from the
training dataset using stochastic gradient descent.

. TSVD++4 The TSVD++ model extends matrix fac-

torization models to incorporates temporal drifts in
user interests [26]. Changes in preference factors with
time are captured using a linear function. The TSVD++
model is trained using the user choice matrices.
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that of time-weighted model. The top part of the figure
shows the STiC model’s state predictions for the item.
The bottom part displays how the same item is scored
by the two models. The item is scored high by the time-
weighted model even after the user state has changed
(the item has become boring). Instead, the STiC model
gives a low score to the item at those instances.

6. Tensor Factorization (Tensor) Tensor factoriza-
tion allows us to further generalize matrix factoriza-
tion to include time. The binary rating (or activity)
matrix along with the time dimension is considered
as a three dimensional tensor. A low rank factoriza-
tion is performed on the tensor by minimizing the to-
tal squared error on the observed ratings. Alternating
least squares is used to approximate the user, item
and time factors. The factors are then combined to
reconstruct the complete rating matrix. The imple-
mentation details are described in [9)].

4.3 Results

The evaluation results are summarized in Table 3. Incor-
porating time is generally found to improve the performance
over non-temporal counterparts [27, 26, 9], as seen from the
better performance of temporal models with latent factors,
such as TSVD++ and Tensor over SVD++ and RBM. Sim-
ilarly the time-weighted (non-latent temporal) model, per-
forms better compared to its static counterpart. Our ap-
proach STiC outperforms all the baselines, including the la-
tent factor temporal models, as it explicitly models the user
behavioral states.

While all of our baseline latent factor models perform well
in terms of low RMSE scores (shown in brackets) on the
training choice matrix (RBM (0.788227), SVD++ (1.28967),
TSVD-++ (0.198687), Tensor(0.176084)), they did not per-
form well in the temporal choice prediction task. Instead,
the static and time-weighted models which are trained per
user fair much better. Such findings can be explained on
two grounds. Firstly, the latent factor model are optimized
to minimize the squared error of the predicted to the ob-
served values rather than their ability to rank items based
on users preferences. Secondly, they are primarily intended
to identify similarities between users and items to discover
new items for them. Instead, for our task, we are more in-
terested in predicting the temporal characteristics of user
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choices for a restricted set of familiar items. This further
demonstrates the importance of using gap measurements in
predicting the next expected visit of the user to a item. Our
STiC model is a hybrid approach that combines the individ-
ual likeness scores with a cluster based model for preference
dynamics, and is superior to the rest of the models.

We investigate the differences between our STiC Model
and the popular time-weighted model (our best perform-
ing baseline) in further detail. Our other baselines (which
perform significantly worse) are not further considered due
to space limitations. A major difference between the time-
weighted and the STiC models stems from the fact that the
time-weighted model assumes user preferences to be pre-
dominantly recency based, while the STiC model captures
different user states of sensitization and boredom and al-
lows for both recency and diversity driven behaviors based
on the user state. As we discussed in Section 1, this im-
pacts quality of user experience in two important ways: (1)
not recommending the items that are boring or user has lost
interest and (2) recommending items where the user has re-
stored recent interest. We illustrate below the importance
of these two factors through more detailed experiments.

(A) Not recommending items which are boring:
We examine the one-step lookahead state predictions made
by the STiC model (s.) for an item and corresponding ob-
served gap lengths (Figure 6) (a)). For the same item Fig-
ure 6 (b) displays the selection likelihood scores, scaled to
the same range, as generated by both the models. We find
that the time-weighted model continues to score the item
based on recency even when the user’s preference state for
the item, as predicted by the STiC model, has changed.
Hence, items which a user is bored of, are scored high by
the time-weighted model but not by the STiC model.

In order to generalize our findings across users we allot a
time-sensitive boredom score to items;

Boredom-Score(t) = Time till next consumption at time ‘t’.
(7
We borrow the concept of future lifetime [13] from sur-
vival analysis to compute the boredom score using our STiC
model. The future lifetime is defined for an event as the re-
maining time till death given survival until a specified time.
Given the cumulative distribution (F') over the time of the
occurrence of the event and some maximum threshold for
time (ts), the expected future lifetime at to can be com-
puted as:

E(T|T > to) = %F(to) S 1-F(t)

For our scenario, the boredom score directly maps to the
expected future lifetime for item consumptions. We denote
the future gap as random variable G and the next future
gap as random variable Gf,. At some time ‘t’, the gap
since the last consumption of the item is t — ¢,, and the
expected next future gap is defined as E(Gsn|Gn > (¢t —
tn), 91...(n—1), A). We first compute the state conditioned
expected future gap using the state emission distributions:

ts

E(Gf|G>(t—tn),m,A):m S 1-Bu(s).



Model T-Precision T-Recall T-F} T-AUC T-Rank
Static 0.108 0.1229 0.115 0.5986 0.3827
Time-Weighted 0.133 0.1842 0.1545 0.6542 0.3682
SVD++ 0.072 0.1312 0.093 0.5175 0.4766
RBM 0.0862 0.1298 0.1036 0.5436 0.4276
TSVD++ 0.0772 0.1001 0.0872 0.571 0.4212
Tensor 0.1031 0.1195 0.1107 0.545 0.3982
| STiC | 0.1641 0.2148 0.1861 | 0.692 | 0.3254 |

Table 3: Comparing the STiC model with popular static and temporal recommendation models on a variety
of temporal evaluation metrics. The STiC model is found superior to all baselines on all evaluation metrics.
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Figure 7: The cumulative distribution for the recom-
mendation likelihood for the time-weighted and the STiC
model given boredom scores. Time-weighted model rec-
ommends more item with higher boredom scores, while
STiC is more conservative than the actual user.

We then marginalizing over the the future state predic-
tions (sn) to compute the boredom score:

Boredom-Score(t) =E(G jn|Grn > (t — tn), g1...(n—1), A)
=5,(5) * E(G¢|G > (t — tn), S, \)
+ s0(B) *E(Gy|G > (t —tn), B, A) .
(10)

We now map the cumulative distribution of the likelihood
to occur in the top-10 recommendation list for the two mod-
els; Time-weighted and STiC, against the boredom scores
predicted by the STiC model (Figure 7). The threshold ¢
is set to 60 (a reasonable high value) sessions. For reference,
the actual consumption likelihood of the user is also plotted
in the same figure. We find that the time-weighted model
recommends more item with higher boredom scores than the
STiC model and those actually consumed by the user. The
STiC model on the other hand is found to be slightly more
conservative than the actual user.

(B) Recommending restored items in addition to
sensitized items: The STiC model further allows parti-
tioning the items consumed in a future sessions into two
sets: Sensitized and Restored items. If P(S|g1...(n—1),A) >
P(Bl|g1...(n-1),A), then the item is allocated to sensitized
set. Otherwise the item is added to the restored set.

We use our classification scheme to further compare the
recommendation performance on specifically the restored
items. Empirically, users were found to consume sensitized
items only around 23% of the times. For the rest of the
times they consumed items from the restored sets. This
suggests that the ability to recommend the restored items
is crucial for improving recommendation performance. The
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Table 4 summarizes the performance scores for the models
separated based on the item set. We find that both the
time-weighted and the STiC model are extremely good at
recommending sensitized items. The time-weighted model,
is particular bad at recommending restored items while the
STiC model continues to work well.

5.  CONCLUSIONS

Understanding the changing user preferences is very im-
portant in the context of recommendation. Most of the
changing user interests are available in the form of activity
streams, where each activity (such as listening to a song or
viewing an shopping item) represents the user’s interest to
a specific item. In this paper, we proposed a behavior-based
model for understanding changing user’s interests using a
hidden semi-Markov model. We used latent psychological
states, sensitization and boredom, to represent the user’s
behavior in this model. We showed that existing state-of-
the-art temporal models fails to predict the time of next ex-
pected visit of an user to an item as compared to our model.
We attribute two main causes for this: (1) not recommend-
ing the bored items and (2) recommending the items where
an user has restored her interests. In our experiments, we
performed several analysis to justify these two reasons, in
addition to overall superior performance of our model.
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