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ABSTRACT
In this paper, we propose a representation learning research
framework for document-level sentiment analysis. Given a
document as the input, document-level sentiment analysis
aims to automatically classify its sentiment/opinion (such
as thumbs up or thumbs down) based on the textural in-
formation. Despite the success of feature engineering in
many previous studies, the hand-coded features do not well
capture the semantics of texts. In this research, we argue
that learning sentiment-specific semantic representations of
documents is crucial for document-level sentiment analysis.
We decompose the document semantics into four cascad-
ed constitutes: (1) word representation, (2) sentence struc-
ture, (3) sentence composition and (4) document compo-
sition. Specifically, we learn sentiment-specific word rep-
resentations, which simultaneously encode the contexts of
words and the sentiment supervisions of texts into the con-
tinuous representation space. According to the principle of
compositionality, we learn sentiment-specific sentence struc-
tures and sentence-level composition functions to produce
the representation of each sentence based on the representa-
tions of the words it contains. The semantic representations
of documents are obtained through document composition,
which leverages the sentiment-sensitive discourse relations
and sentence representations.

Categories and Subject Descriptors
I.2.7 [ARTIFICIAL INTELLIGENCE]: Natural Lan-
guage Processing

Keywords
sentiment analysis; deep learning; natural language process-
ing

1. INTRODUCTION
Sentiment analysis (also known as opinion mining [15,

9, 4]) that analyzes people’s opinions/sentiments/emotions
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from texts is an active research field in natural language
processing [10]. In this research, we target at the task of
document-level sentiment analysis, which is a fundamental
and most studied area in sentiment analysis. It aims to clas-
sify the sentiment/opinion ( suc as thumbs up and thumbs
down) of a document based on the text information.

Most previous studies follow Pang et al. [16] and regard
document-level sentiment analysis as a special case of text
categorization task. They typically employ machine learn-
ing algorithms, such as Supported Vector Machine, to build
the sentiment classifier from the texts with accompanying
sentiment labels in a supervised learning framework. Un-
der this direction, most studies focus on designing effective
features because the performance of a sentiment classifier
is heavily dependent on the choice of feature representation
of texts [3]. For example, Mohammad et al. [13] build the
top-performed system in the Twitter sentiment classification
track of SemEval 2013 [14] by using many sentiment lexicons
and hand-crafted rules as features.

Despite the success of feature engineering, hand-coded fea-
tures do not well capture the semantics of texts. Further-
more, it is desirable to discover the semantic representations
of texts from the data and make the learning algorithms less
dependent on laborious feature engineering. Recently, rep-
resentation learning (or deep learning [1]) has been shown
effective in many natural language processing tasks, such
as word-segmentation, pos-tagging, named entity recogni-
tion and parsing, etc. However, we find that directly ap-
plying these fact-based approaches to document-level sen-
timent analysis is not effective enough. The reason lies in
that they typically fail to capture the sentiment informa-
tion of texts. Take word embedding1 as an example, exist-
ing context-based learning algorithms [2, 11] only model the
contexts of words. As a result, words with similar contexts
but opposite polarity, such as good and bad, are mapped into
neighboring vectors. It is meaningful for some tasks such as
pos-tagging, but it becomes a disaster for sentiment analy-
sis because they have the opposite sentiment polarity. We
therefore focus on developing sentiment-specific representa-
tion learning methods for document-level sentiment analysis.

2. THE PROPOSED RESEARCH
In this research, we argue that learning sentiment-specific

document semantic is vital for document-level sentiment
analysis. According to the principle of compositionality that

1Word embedding is a dense, low-dimensional and real-
valued vector for each word.
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Figure 1: The sentiment-specific representation learning framework for document-level sentiment analysis.

the meaning of a longer expression (a sentence or a docu-
ment) comes from the meanings of its words and the rules
used to combine them [5], we decompose the document se-
mantic into four cascaded constituents: (1) word embed-
ding, (2) sentence structure, (3) sentence composition and
(4) document composition. The work-flow of the proposed
representation learning framework is illustrated in Figure 1.
We learn word embeddings to capture the meanings of word-
s, and then learn sentence structure and sentence composi-
tion to produce the representations of sentences based on
the word embeddings. Afterwards, we calculate the docu-
ment representations through document composition based
on sentence representations and discourse analysis. We ap-
ply the learned document representations as features, and
build the document-level sentiment classifier with existing
machine learning methods such as SVM. We describe the
research question of each constitute in this section.

2.1 Sentiment-Specific Word Embedding
Word embedding is the fundamental component of our

representation learning framework because of the principle
of compositionality. Word embedding is a low-dimensional,
dense and real-valued vector for each word. After trained
on a corpus, the words with similar grammatical usages and
semantic meanings might be mapped into close vectors in
the embedding space. Accordingly, the learned word embed-
dings can be easily utilized as features that capture semantic
or clustering information of words for natural language pro-
cessing tasks [2].

Existing embedding learning algorithms typically only cap-
ture the contexts of words but ignore the sentiment infor-
mation of texts. As a result, words with similar contexts
but opposite polarity, such as good and bad, are mapped in-
to neighboring vectors. It is meaningful for some tasks such
as pos-tagging, but it is problematic for sentiment analy-
sis because they have the opposite sentiment polarity. To
solve this problem, we propose to learn sentiment-specific
word embedding (SSWE) that simultaneously encodes the
contexts of words and sentiment information of texts in the
continuous representation of words. Thus, the nearest neigh-
bours of SSWE are also semantically similar while it favors
words with the same sentiment polarity. We propose two
methods based on existing embedding learning algorithm-
s [2, 11] to learn SSWE, which are detailed in Section 3.1.

2.2 Sentiment-Specific Sentence Structure
Handling the complicated expressions delivering people’s

opinions is one of the most challenging problems in sentiment
analysis. Traditional sentiment analysis algorithms typical-

ly simply employ bag-of-words to represent a sentence. As
a result, they cannot handle the inconsistent sentiment po-
larity between a phrase and the words it contains, such as
“not bad” and “a great deal of ”. Bag-of-ngram might cover
high-order phrases, however, the use of it will dramatically
increase the dimension of feature space.

We argue that learning the structure inherent in a sen-
tence is important to help us understand its meaning. Tradi-
tional structure learning algorithms in fact-based NLP tasks
(such as trunking and parsing) typically manually design
linguistic-driven grammars or learn the patterns from the
annotated treebank [10]. However, they cannot well handle
the negation, intensification, and contrast phenomenons on
the user-generated texts (e.g., reviews, tweets, etc.), which
are the major focus of sentiment analysis algorithms. We
therefore target at learning the sentiment-specific structures
of sentences, which are optimized for sentiment analysis.
Our sentiment-specific sentence segmentor [19] is described
in Section 3.2.

2.3 Sentence Composition
Sentence representation is a pivot for document-level sen-

timent analysis because it links the word representations
and document representations. Since regarding each sen-
tence as a unique element makes the representation space
to be extremely sparse, dominated previous studies investi-
gate sentence composition methods [12] that calculate the
representation of a sentence based on the representations of
the words it contains. With the revival of interest in deep
learning [1], neural network based methods including Re-
cursive Neural Networks [17, 18] and Convolutional Neural
Networks [7] have proven effective in sentence-level senti-
ment classification. However, to our knowledge, whether
the compression based methods (such as autoencoder or re-
stricted boltzmann machine) can learn meaningful sentence
composition for sentiment analysis still remains unclear [6].
It is desirable to develop a sentiment-tailored composition
approach that effectively handle the negation, intensifica-
tion, and contrast phenomenons in sentiment analysis.

2.4 Document Composition
Learning meaningful and effective document representa-

tion is the major focus of the proposed representation learn-
ing framework. Given a document and the representation of
each sentence it contains, we need to re-visit the principle
of compositionality and calculate the document representa-
tion with document composition. We argue that sentiment-
sensitive discourse relation is the key of document composi-
tion. A similar idea is given by Zhou et al. [22] that empir-
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ically defines a discourse scheme with constraints on senti-
ment polarity based on Rhetorical Structure Theory (RST).
Unlike their method, we want to learn these sentiment-sensitive
discourse phenomenons from the data, and make the com-
position learning algorithm less dependent on feature en-
gineering [8]. After that, the learned document representa-
tions will be considered as features for building the sentiment
classifier with existing machine learning algorithms.

3. METHODOLOGY
We introduce our algorithms for learning sentiment-specific

word embeddings and sentence structures in this part.

3.1 Sentiment-Specific Word Embedding
We extend two state-of-the-art neural network based meth-

ods [2, 11] tailored for learning word embeddings, and inte-
grate the sentiment information of sentences (e.g. tweets)
to learn the sentiment-specific word embedding (SSWE).

Our first model (SSWEu [21]) is an extension based on
the C&W model [2], as illustrated in Figure 2). Collobert
and Weston [2] introduce C&W model to learn word em-
bedding based on the contexts of words. Given an ngram
such as “cat chills on a mat”, C&W replaces the center word
with a random word wr and derives a corrupted ngram“cat
chills RANDOM a mat”. The training objective is that the
original ngram is expected to obtain a higher context score
than the corrupted ngram by a margin of 1. The ranking
objective can be optimized by a hinge loss,

losscw(t, tr) = max(0, 1− fcw(t) + fcw(tr)) (1)

where t is the original ngram, tr is the corrupted ngram,
fcw(·) is a one-dimensional scalar representing the context
score of the input ngram. During training, the context score
fcw(·) is obtained with a feed-forward neural network as
shown in Figure 2.

lookup

linear

hTanh

linear

(a) C&W

so cooool :D

(b) SSWEu

so cooool :D

context
sentiment

Figure 2: The traditional C&W model and our neu-
ral network (SSWEu [21]) for learning sentiment-
specific word embedding.

Formally, fcw(·) is calculated as given in Equation 2, where
L is the lookup table of word embedding, w1, w2, b1, b2 are
the parameters of linear layers. The original and corrupt-
ed ngrams are treated as inputs of the feed-forward neural
network, respectively.

fcw(t) = w2 · a+ b2 (2)

a = hTanh(w1Lt + b1) (3)

We develop a neural network (SSWEu) that captures the
sentiment information of sentences as well as the contexts of
words. Given an original (or corrupted) ngram and the sen-
timent polarity of a sentence as the input, SSWEu predicts

a two-dimensional vector for each input ngram. The two
scalars (fu

0 , fu
1 ) stand for context score and sentiment score

of the input ngram, respectively. The training objectives
of SSWEu are that (1) the original ngram should obtain a
higher context score fu

0 (t) than the corrupted ngram fu
0 (tr),

and (2) the sentiment score of original ngram fu
1 (t) should

be more consistent with the gold polarity annotation of sen-
tence than corrupted ngram fu

1 (tr). The loss function of
SSWEu is the linear combination of two hinge losses,

lossu(t, tr) = α · losscw(t, tr) + (1− α) · lossus(t, tr) (4)

where losscw(t, tr) is the context loss as given in Equation 1,
lossus(t, tr) is the sentiment loss as described in Equation 5.
The hyper-parameter α weighs the two parts.

lossus(t, tr) = max(0, 1− δs(t)fu
1 (t) + δs(t)fu

1 (tr)) (5)

where δs(t) is an indicator function that reflects the gold
sentiment polarity of a sentence,

δs(t) =

{
1 if t is positive

−1 if t is negative
(6)

Our second model (SSPE [20]) is an extension based on
the context-based method (SkipGram) proposed by Mikolov
et al. [11]. Given a word (or phrase) wi as the input, Skip-
Gram maps it into its embedding representation ei, and u-
tilizes ei to predict the context words of wi, namely wi−2,
wi−1, wi+1, wi+2, et al. The training objective of SkipGram
is to maximize the average log probability:

fcontext =
1

T

T∑
i=1

∑
−c≤j≤c,j 6=0

log p(wi+j |ei) (7)

where T is the occurrence of each phrase in the corpus, c
is the window size, ei is the embedding of the current word
wi, wi+j is the context words of wi.

We extend SkipGram and develop sentiment-specific phrase
embedding (SSPE) to integrate the sentiment information of
sentences, as illustrated in Figure 3. Given a triple 〈wi, sj , polj〉
as the input, where wi is a word(or phrase) contained in the
sentence sj whose gold sentiment polarity is polj , our train-
ing objective is to (1) utilize the embedding of wi to predict
its context words, and (2) use the sentence representation
sej to predict the gold sentiment polarity of sj , namely polj .
We simply average the embedding of phrases contained in
a sentence as its continuous representation sej . The objec-
tive of the sentiment part is to maximize the average of log
sentiment probability:

fsentiment =
1

S

S∑
j=1

log p(polj |sej) (8)

where S is the occurrence of each sentence in the corpus,∑
k poljk = 1. For binary classification between positive and

negative, the distribution of [0,1] is for positive and [1,0] is
for negative. The final training objective is to maximize the
linear combination of the context and sentiment parts:

fSSPE = α · fcontext + (1− α) · fsentiment (9)

where α is a hyper-parameter that weights the two parts.
We collect massive tweets containing positive and negative

emoticons to train the sentiment-specific word embeddings.
We regard emoticon signals as the sentiment supervision of
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Figure 3: The traditional SkipGram model and our
neural network (SSPE [20]) for learning sentiment-
specific word embedding.

sentences during training. After using some heuristic filter-
ing rules (detailed in [21, 20]), we collect 10M tweets, se-
lected by 5M tweets with positive emoticons and 5M tweets
with negative emoticons, as the training data.

3.2 Sentiment-Specific Sentence Structure
We describe our algorithm for learning sentiment-specific

sentence segmentation [19] in this part. We develop a joint
segmentation and classification framework, which simulta-
neously conducts sentence segmentation and sentence-level
sentiment classification. The intuitions of the proposed joint
model are two-folds:
• The segmentation results have a strong influence on the

sentiment classification performance, since they are the in-
puts of the sentiment classification model.
• The usefulness of a segmentation can be judged by whether

the sentiment classifier can use it to predict the correct sen-
tence polarity.

SegmentationsInput
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Figure 4: The proposed framework ([19]) for learn-
ing sentiment-specific sentence segmentation.

Specifically, we use a log-linear model to score each seg-
mentation candidate, and exploit the phrasal information of
top-ranked segmentations as features to build the sentimen-
t classifier. A marginal log-likelihood objective function (as
given in Equation 10) is devised for the segmentation model,
which is optimized for enhancing the sentiment classification
performance.

loss = −
|T |∑
i=1

log(

∑
j∈Hi

φij∑
j′∈Ai

φij′
) + λ||w||22 (10)

where T is the training data; Ai represents all the segmen-
tation candidates of sentence si; Hi means the hit candi-
dates of si; λ is the weight of the L2-norm regularization
factor (detailed in [19]).

4. EMPIRICAL RESULTS
We conducts experiments to evaluate the effectiveness of

the proposed algorithms. In this part, we show the empirical

results by applying sentiment-specific word embeddings and
sentence structures for Twitter sentiment classification.

4.1 Sentiment-Specific Word Embedding
We conduct positive/negative Twitter sentiment classifi-

cation on the benchmark dataset from SemEval 2013 [14]. In
our method (SSWEu), we directly apply the learned SSWE
as features for building the sentiment classifier. We com-
pare with the following baseline methods (more baselines
are detailed in [21]). Results are given in Table 1.

(1) DistSuper : We use the 10 million tweets selected by
positive and negative emoticons as training data, and build
sentiment classifier with LibLinear based on bag-of-words.

(2) SVM : The bag-of-word features and SVM are widely
used baseline methods to build sentiment classifiers [16]. We
use LibLinear to train the classifier.

(3) NRC : NRC-Canada builds the top-performed system
in SemEval 2013 Twitter sentiment classification track [13].
They use many lexicons and hand-crafted features.

Method Macro-F1
DistSuper 61.74
SVM 74.50
NRC (Top System in SemEval 2013) 84.73
SSWEu 84.98
SSWEu+NRC 86.58

Table 1: Macro-F1 on positive/negative classifica-
tion of tweets [21].

Our method (SSWEu) achieves 84.98% by using only SSWEu

as features without using any sentiment lexicons or hand-
crafted rules. The results indicate that SSWEu automati-
cally learns discriminative features from massive tweets and
performs comparable with the state-of-the-art manually de-
signed features. After concatenating SSWEu with the fea-
ture sets of NRC, the performance is further improved.

We also compare with other word embedding algorithm-
s for Twitter sentiment classification. From Table 2, we
find that our sentiment-specific word embeddings (SSWEh,
SSWEs, SSWEu) yield better performances.

Embedding unigram uni+bi uni+bi+tri
C&W 74.89 75.24 75.89
Word2vec 73.21 75.07 76.31
ReEmb(C&W) 75.87 – –
ReEmb(w2v) 75.21 – –
WVSA 77.04 – –
SSWEh 81.33 83.16 83.37
SSWEr 80.45 81.52 82.60
SSWEu 83.70 84.70 84.98

Table 2: Macro-F1 on positive/negative classifica-
tion of tweets with different word embeddings [21].

4.2 Sentiment-Specific Sentence Structure
We evaluate our sentiment-specific sentence segmentor by

applying it for Twitter sentiment classification on the bench-
mark dataset from SemEval 2013. We compare the proposed
model (JSC) with two pipelined methods. Pipeline 1 use the
bag-of-word segmentation. Pipeline 2 use the segmentation
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Figure 5: Macro-F1 for positive/negative classifica-
tion of tweets with joint and pipelined models [19].

From Figure 5, we find that the proposed model consis-
tently outperforms pipelined baseline methods in all feature
settings. The reason lies in that our method uses the senti-
ment information to optimize the sentence segmentor, which
in turns produces benefits to the sentiment classifier.

5. RESEARCH ISSUES FOR DISCUSSION
We briefly describe the potential research issues for dis-

cussion in this part. For word embedding, the issues
are which kind of sentiment information (positive/negative
or fine-grained sentiment; sentence-level or document-level)
might be used, and how to incorporate them for learning bet-
ter SSWEs. For sentence structure, the issue is whether
we can manually design a hybrid grammar that integrates
both linguistic and sentiment schemes. If not, how can we
learn the grammar effectively with minor manually anno-
tations. For sentence composition, the issue is how to
develop reasonable and effective composition functions to
effectively handle the negation, intensification, and contrast
phenomenons. For document composition, how to care-
fully define or automatically learn the sentiment-sensitive
discourse relations, and then leverage them for document
composition are the issues to be solved.
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