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ABSTRACT
The friendship paradox is a sociological phenomenon first
discovered by Feld which states that individuals are likely
to have fewer friends than their friends do, on average. This
phenomenon has become common knowledge, has several in-
teresting applications, and has also been observed in various
data sets. In his seminal paper Feld provides an intuitive ex-
planation by showing that in any graph the average degree
of edges in the graph is an upper bound on the average de-
gree of nodes. Despite the appeal of this argument, it does
not prove the existence of the friendship paradox. In fact, it
is easy to construct networks – even with power law degree
distributions – where the ratio between the average degree
of neighbors and the average degree of nodes is high, but all
nodes have the exact same degree as their neighbors. Which
models, then, explain the friendship paradox?

In this paper we give a strong characterization that pro-
vides a formal understanding of the friendship paradox. We
show that for any power law graph with exponential pa-
rameter in (1,3), when every edge is rewired with constant
probability, the friendship paradox holds, i.e. there is an
asymptotic gap between the average degree of the sample
of polylogarithmic size and the average degree of a random
set of its neighbors of equal size. To examine this charac-
terization on real data, we performed several experiments
on social network data sets that complement our theoretical
analysis. We also discuss the applications of our result to
influence maximization.

1. INTRODUCTION
In popular culture, the friendship paradox is known as

the somewhat discouraging statement that our friends have
more friends than we do. This statement is an interpretation
of a result discovered by Feld [10] which states that individ-
uals are likely to have fewer friends than the mean number
of friends their friends have. Superficially, since the number
of friends a person has often translates to social status, the
friendship paradox receives considerable attention. Beyond
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this interpretation, the idea that the degree of a random
neighbor may be substantially larger than that of a random
node has interesting applications for immunization [5, 19]
and influence maximization [28], and it has also been veri-
fied experimentally in large online social networks [13, 30].

Despite everything we know about it, our mathematical
understanding of the friendship paradox is still limited. In
his seminal paper, Feld provides an intuitive explanation for
the friendship paradox by showing that in any graph the
average degree of edges in the graph is an upper bound on
the average degree of nodes. This however, is far from prov-
ing the friendship paradox – that a node is likely to have
a smaller degree than the average degree of her friends. In
fact, as we will later show, it is easy to construct networks
– even with power law degree distributions – where the ra-
tio between the average degree of neighbors and the average
degree of nodes is high, but all nodes have the exact same
degree as their neighbors. In other words, not all graphs
exhibit the friendship paradox, degree distribution does not
explain it, and other structural properties need to be con-
sidered. Given the evidence in social network data sets, the
question is why the friendship paradox exists.

Which models explain the friendship paradox?

The inception of network science is largely due to semi-
nal mathematical models that explain phenomenon such as
small-worlds [17, 31] and power-law degree distributions [?].
In these models we have a mathematical definition for the
phenomenon exhibited: short distances in the network are
defined as polylogarithmic in its size, heavy tail degree distri-
bution as a power-law. But how should we mathematically
define existence of the friendship paradox in a network? A
possible definition of the friendship paradox is the existence
of an asymptotic gap between a random node and its ran-
dom neighbor. In a regular network, where all nodes have
the same degree, there is no difference between the degree of
any node and that of its neighbors, so the friendship paradox
does not holds. In a star network on the other hand, where
a randomly selected node is likely to be an endpoint with
its only neighbor being the center, the ratio between a node
and its neighbor is linear in the size of the network, and
the friendship paradox holds. So what lies between these
extremes that can serve as good model for social networks?

Algorithmic implications. The massive adoption of
online social networking technologies in recent years is draw-
ing substantial interest to the study of information diffusion
in social networks. In particular, a problem which received
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significant attention by the data mining community is that
of influence maximization. First posed by Domingos and
Richardson [8, 26] and further formulated by Kempe, Klein-
berg, and Tardos [16], influence maximization is the algo-
rithmic challenge of selecting individuals who can serve as
early adopters of a new product or technology in a manner
that will trigger a large cascade in the social network.

Although there has been substantial progress on the prob-
lem throughout the past decade, naive application of state-
of-the-art algorithms is often ineffective. In many applica-
tions, one only has access to a small sample of the network
in which individuals have low influence potential, and al-
gorithms that select their users from such samples have a
limited effect. In marketing applications for example, mer-
chants often reward influential users who visit their online
store, or who have engaged in other ways (subscribe to a
mailing list, follow the brand, install an application etc.). If
we think of users who arrive at a store or follow a brand as
being randomly sampled from the network, it follows that
observing high-degree users is a rare event simply because
the degree distributions of social networks are heavy-tailed.

Two- stage approaches. As an alternative to spending
the entire budget on nodes in the sample, recent work advo-
cates for a two-stage approach called Adaptive Seeding [28]:
In the first stage, a fraction of the budget is spent on nodes
in the sample for the purpose of attracting their neighbors
to join the set of potential influencers (e.g. attract neigh-
bors to visit the website, follow the brand, register their
email, etc.). In the second stage, after some neighbors have
joined, the remainder of the budget is used to select an in-
fluential set of individuals from the (hopefully larger) set of
accessible nodes. Intuitively, a good strategy is one which
selects nodes in the first stage s.t. in expectation over all
the possible arrivals of neighbors in the second stage, in-
fluence can then be maximized with the remaining budget.
The main result in [28] is a constant factor approximation
algorithm for a class of influence models that includes the
well-studied independent cascade and linear threshold influ-
ence models [16].

Showing that the friendship paradox exists in social net-
works implies that adaptive seeding algorithms can indeed
enable dramatic improvements for information dissemina-
tion.We illustrate how the friendship paradox translates to
potential influence of two-stage approaches in Figure 1.

1.1 The friendship paradox
The rationale behind a two-stage approach is that while

samples of a graph will likely have low degree nodes, they
may have high degree neighbors. Intuitively, since high de-
gree nodes have many neighbors (by definition), one would
hope such nodes will be connected to the sample. In simple
terms, we are guided by the following question:

Are random nodes likely to have high degree neighbors in a
social network?

One central contribution in this paper is to explore this
question at depth and provide analytical and empirical ev-
idence to show that this is the case. For a given graph
described through a mathematical model of a social net-
work, we are interested in understanding whether with con-
stant probability a random node has a neighbor which has an
asymptotically higher degree, i.e. whether the ratio between
the degree of a node and its neighbor asymptotically grows
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Figure 2: An illustration of two power law networks. The
network on the right (B) is created using the network on
the left (A) and is a set of disjoint cliques. Thus despite
being power law every node has exactly the same degree as
its neighbor.

with the size of the graph. We refer to the phenomenon
of a random node having an asymptotically higher-degree
neighbor with constant probability as the friendship para-
dox. Stated in these terms, our objective is understand
whether the friendship paradox exists in social networks.

1.2 The friendship paradox
As mentioned before the friendship paradox in social net-

work has been first observed by Feld [10] which states that
in any graph, the average degree of neighbors is an upper
bound on the average degree of nodes in the graph. Before
we describe our results, it would be useful to discuss how the
friendship paradox and our goals differ from the implications
of Feld’s result.

• Size matters. To identify asymptotic ratios, we must
be able to quantify how many more neighbors a neigh-
bor has.

• Averages do not imply likelihood. Perhaps the
most critical distinction is that the friendship paradox
is a statement about averages, and does not imply that
a node is likely to have a lower degree than her neigh-
bor. So, for the purpose of designing algorithms the
friendship paradox is inapplicable.

• Random neighbor vs. random node’s neighbor
It is important to emphasize that our result is not a
constant probability version of Feld’s result. The con-
stant probability version of Feld’s result is the ratio
between the degree of a randomly selected node v and
the degree of a random neighbor y in the graph. Note
that y is not necessary a neighbor of x. To see that
these are two different random variables consider the
star of N nodes: the expected degree of friends of a
random node is N −1/N , while a constant probability
version of Feld gives N/2.

1.3 The structure of social networks
Perhaps the most common assumption about the struc-

ture of social networks and complex systems in general, is
that their degree distribution is heavy tailed. In this paper
we focus on the most commonly cited heavy tail distribu-
tion, the power law distribution: the likelihood of observing
a node with degree i in the network is proportional to i−β ,
where β is a constant that depends on the network. 1

1There is an interesting debate on the degree distribution of
social network graphs [24]. Different papers support differ-
ent heavy tail distributions: power law, log normal, double
Pareto, etc. Here we focus on power law distributions for
simplicity.
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Figure 1: An illustration of the friendship paradox in different networks. The two networks above are of the same size in
terms of nodes and edges but with different topologies. The graph on the left has edges connected between nodes uniformly
at random, and the graph on the right is a random graph with degree distribution close to a power law, i.e. the probability of
observing a node of degree i is proportional to i−β for some constant β. In the first network the friendship paradox does not
hold while in the second one it does. In each network we performed the following experiment: we selected five random nodes
to represent the sample S, which are depicted in yellow, their neighbors N (S) are depicted in orange and their neighbors
which is the potential influence of N (S) are depicted in red. The rest of the nodes are represented in pink.

In Figure 2 we illustrate an example showing that the
power law property does not suffice to show that a node
is likely to have less their friends than her friend. Essen-
tially, one can take any power law network (illustrated as
network A) and turn it into a power law network where
each node of degree d in the original network is represented
as an isolated clique of size d + 1. A series of such graphs
has a power law degree distribution. In Section 3 we show
such a construction which formally holds for networks with
finite degree distributions. This example is obviously con-
trived, but nevertheless it proves an important point: power
law degree distributions alone do contain enough informa-
tion about the network to study the likelihood of a node to
have a high degree neighbor. If we wish to prove properties
on social networks we will need to consider some form of a
model. An important property to consider is the presence
of long-range edges. Long-range links were first observed by
Granovetter [12] and are often modeled as random edges [17,
31].

A general model for social networks. Following the
above discussion and inspired by the work of Watts and
Strogatz [31], we analyze the following family of graphs: we
start from any(potentially adversarial) power law network
and then we “re-wire” each edge in the network with some
fixed probability. The implication is that one can take any
model of a social network as long as its degree distribution
follows a power law, allow every edge to have some fixed
probability to be connected at random, and our results will
hold. Thus even the most contrived examples of power law
networks can be slightly perturbed and succumb to our anal-
ysis.

Additional models. It is important to emphasize that
the results we show here also hold for other well-studied
models of social networks2. In particular, our results also
hold for the configuration model [4] with power law degree

2We omit the proofs for these models here due to lack of
space, though the techniques we show here can be extended
to these models as well.

distributions for finite graphs [1](this is a special case of our
model) and preferential attachment model [3], both widely
used in social network analysis (see e.g. [1, 27, 25]).

1.4 Our results
Informally, our main result is that small samples suffice to

observe the friendship paradox in social networks. More for-
mally, for any power law graphs with parameter β ∈ (1, 3),
allowing every edge to be rewired with constant probability,
we show there is an asymptotic gap between the average de-
gree of the sample of polylogarithmic size and the average
degree of a random set of its neighbors of equal size. The
algorithmic implication being that, for example, influence
maximization strategies can be dramatically improved by
being applied on neighbors.

To show the importance of random edges, we first show a
construction of a finite power law network where the friend-
ship paradox does not hold – every node has almost the same
degree as its neighbor. We then analyze the case where only
a single node is sampled from the network. We show that
the question of whether an asymptotic gap exists between a
set of randomly drawn nodes and their neighbors depends
on the parameters of the graph. Our result show a thresh-
old phenomenon: for graphs whose degree distribution is a
power law with β ∈ (1, 2] an asymptotic gap exists, while
for β ∈ (2, 3) it does not. Using this analysis we develop our
main result for polylogarithmic samples.

To examine how these results relate to real data, we per-
formed several experiments on social network data sets.

1.5 Related Work
The friendship paradox is directly related to Feld’s friend-

ship paradox [10, 11]. Feld gives an explicit characterization
of the average degree of a neighbor in terms of the expected
degree and variance of the degree distribution in the net-
work and observes that the average degree of neighbors will
be strictly greater than the average degree of nodes when the
variance is greater than 0. In addition, Feld provides exper-
imental evidence strengthening his thesis. Based on these
intuitions, several heuristics for detecting contagions and de-
signing immunization strategies have been suggested [5, 6],
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and our results here provide provable guarantees for these
techniques.

Recently, large scale experiments showed that individuals
are indeed likely to have less friends than the average number
of friends their friends have in the Facebook [30] and Twitter
networks [13]. Our work is somewhat complementary to
these works and provides rigorous analysis of the phenomena
observed in their experiments.

From a technical perspective, a related research direction
recently explored is social sampling. In this context the goal
is usually to sample a subgraph and maintain properties of
the original graph [20], compute some statistics in sublinear
time [7, 14, 15], or find a subset of the nodes with a certain
property [2]. Despite some similarities, our work is different
as we focus on finding high degree nodes in a network us-
ing an existing sample and we only consider the the node’s
immediate neighbors.

2. PRELIMINARIES
Power law graphs. We use the same definition of a power
law network that is used in [1]. A graph has a power law

distribution if the number of nodes of degree i is b e
α

iβ
c. Since

the sum of the degrees in a network has to be even, the num-
ber of nodes of degree 1 should either be beαc or beα + 1c
depending on the parity of the sum of the higher degree
nodes in the graph. For simplicity, throughout the rest of
the paper we assume that the the number of nodes of degree
1 is eα, and note that all the results naturally extend to the
general definition. For brevity we set C = eα and use N and
M to denote the number of nodes and edges in the graph, re-
spectively. We denote the average degree of a set B as d(B).

Social network model. We will analyze the following
random graph model, which is inspired by the small-world
model of Watts and Strogatz [31]. We start from an arbi-
trary (potentially adversarial) graph with a power law dis-
tribution and then “rewire” each edge in the graph with con-
stant probability p > 0. Rewiring is done by first selecting
all the edges that have to be rewired and then by applying
the technique used in the configuration model [4]: every edge
selected to be rewired is split into two stubs attached to the
nodes corresponding with the endpoints of that edge, and
the set of all stubs are then connected uniformly at random.
The importance of this model is that it shows that even when
starting from an adversarial structure (potentially with a
strong community structure or even a disconnected
network) a small fraction of randomness suffices to observe
an asymptotic gap between the degree of a sampled set of
nodes and their neighbors. In case of self-loops, we count a
node as a neighbor of itself (in most of the setting the num-
ber of self loops is extremely small).

3. MISBEHAVED POWER LAWS
In this section we show that there exists a family of power

law graphs such that the ratio between the degree of a node
and the degree of its neighbor is constant for every node in
the graph.3

3We note that for simplicity we prove a result for β = 2,
although similar counter-examples can be constructed for
other values of β. We also note that it is easy to modify our
construction to obtain a connected graph.

Proposition 3.1. There exist a family of power law graphs
with β = 2 such the ratio between the degree of any node and
the degree of any of its neighbor is at most a constant.

Proof. First we order the nodes in an increasing degree
order. We begin by generating the stubs, initializing each
node with unassigned stubs. For all nodes of degree smaller

than
√
N

400
,4 starting from the first node we sequentially match

each unassigned stub of a node v with an unassigned stub
of the minimum ranked node with an available unassigned
stub which is not already connected to v.

An interesting property of this ordering is that for every

node v of degree smaller than
√
N

400
it is always possible to

connect it with the subsequent d(v) nodes. This is true
because we consider nodes in an increasing degree order.

Note that in this way every node of degree smaller
√
N

400
is

connected with nodes that have a degree that is at least half
of its degree, and at most double its degree. In fact, every
node v connects with at most d(v) subsequent nodes and
d(v)

2
preceding nodes.

Now we have to assign the edges between all the nodes of

degree larger than
√
N

400
. But this can be done by assigning

edges arbitrarily (for example using the configuration model
on the remaining stubs) since the maximum degree node has

degree
√
N and so the ratio between the degree of any two

nodes with degree larger than
√
N

400
is at most constant.

4. SINGLE SAMPLES
As a preliminary to the main results in Section 5, we in-

vestigate the case in which the sample is of a constant size.
As we will now show, when we consider small samples the
question of whether neighbors yield better results largely de-
pends on the parameters of the graph. While an interesting
result in of itself, the lemmas for establishing this will also
be instrumental for proving the main result in Section 5.

Throughout the rest of this paper we use G(β, p) to de-
note the family of graphs with power law degree distribu-
tions with exponent β in which every edge has some small,
constant probability p > 0 to be rewired at random.

Lemma 4.1. Let u be a node sampled from G(β, p) with
β ∈ (1, 2) and let v be a neighbor of u drawn u.a.r.. Then,
for any constant ε > 0, with constant probability the ratio

between the degree of u and v is Ω
(
N

β−1
β
−ε
)

.

Proof. We first compute the average degree of a node in
G(β, p). Using the fact that the generalized harmonic sum
converges to a constant when β > 1, i.e.

∑∞
i=1

1
iβ
∈ O(1),

we can conclude that the number of nodes in a power law
graph with β ∈ (1, 3) is:

N =

∆∑
i=1

⌊
C

iβ

⌋
=

dC1/βe∑
i=1

⌊
C

iβ

⌋
∈ Θ(C)

where ∆ is used to denote the largest degree in the graph.
The number of edges is:

M =

dC1/βe∑
i=1

i

⌊
C

iβ

⌋
= O

dC
1/βe∑
i=1

⌊
C

iβ−1

⌋ ∈ Θ (C 2
β

)
4In the proof we use 400 for simplicity, the proof can be
extended to hold for every large constant C instead of 400.
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where we use the fact that that the generalized harmonic
sum for 0 < α < 1 is equal to

∑t
i=1 i

−α ∈ Θ
(
t1−α

)
. The av-

erage degree of a node in G(β, p) is therefore in Θ
(
C

2
β
−1
)

.

So, by Markov’s inequality, we know that when we select a
random node with probability 1

2
its degree is at most twice

its expected degree. Thus, with probability 1
2

we sample a

node of degree O
(
C

2
β
−1
)

.

To lower bound the degree of a random neighbor, we show
that with constant probability an edge is incident to a high
degree node. To show this we calculate the number of end-
points of edges incident to nodes of degree at least K, de-
noted Ad>K :

Ad>K =

dC1/βe∑
i=dKe

i

⌊
C

iβ

⌋
= Θ

(
C
(
C

2
β
−1 −K2−β

))
since that for α < 1,

∑n
i=k

1
iα

= Θ(n1−α − k1−α).
Therefore the number of endpoints of edges incident to

nodes with degree greater or equal to K = C
1/β−ε is Θ(M).

If we restrict our attention to endpoints of rewired edges in-
cident to nodes with degree greater or equal to K = C

1/β−ε,
denoted by Rd>K , then by linearity of expectation we have
that E[Rd>K ] = pAd>K ∈ Θ(M). Unfortunately the proba-
bility that the endpoints are rewired is not independent. In
fact, two endpoints incident to the same edge are either both
rewired or both not. So to obtain a concentration result we
cannot apply the Chernoff bound. Fortunately in this case
we can use the method of bounded difference [23] which tells
us that the fact that an edge is rewired changes the value of
Rd>K by an additive factor of 2 at most, and we have that
Rd>K ∈ Θ(M).

So with constant probability a random neighbor of a ran-
dom node would be connected to the node by a rewired edges
and this edge with constant probability will point to a node
in Rd>K ∈ Θ(M).

Thus, for β ∈ (1, 2) with constant probability the ratio
between a node a random neighbor is at least:

K

(
M

N

)−1

= Ω
(
C
β−1
β
−ε
)

= Ω
(
N

β−1
β
−ε
)
.

The case when β = 2: we can apply the same technique
as above for β = 2 . In this case as in the above proof the
number of nodes is N ∈ Θ(C) and the number of edges is:

M =

dC1/βe∑
i=1

i

⌊
C

i2

⌋
= O

dC
1/βe∑
i=1

⌊
C

i

⌋ ∈ Θ (C logC)

where this time we use the fact that that the harmonic
sum is equal to

∑t
i=1 i

−1 ∈ Θ (log t). When β = 2 the
number of endpoints of edges incident to nodes of degree at
least K is:

Ad>K =

dC1/βe∑
i=dKe

i

⌊
C

iβ

⌋
= Θ (C (logC − logK))

where we use the fact that
∑n
i=k

1
i

= Θ(logn− log k). Using
the same technique one can show that with constant proba-

bility the ratio between the degree of u and v is Ω (logαN),
for any constant α > 0.

Corollary 4.2. Let u be a randomly selected node from
G(β, p) with 1 < β ≤ 2, and let v a randomly selected neigh-
bor of u. Then with constant probability we have:

d(v)

d(u)
∈ ω(1).

4.1 Phase transition for β > 2
Somewhat surprisingly, we now show that when β > 2 the

friendship paradox does not hold for a single node – and not
even for a sample of a constant size, and even when all edges
are rewired at random. In other words, when β > 2 a con-
stant number of nodes do not suffice to observe asymptotic
gaps between degrees of the sample and their neighbors, even
in a random graph model.

Lemma 4.3. Let u be a node sampled from G(β, 1) with
β ∈ (2, 3), and let v be a random neighbor of u. Then, w.h.p.
the ratio between the degree of u and that of v is Θ(1).

Proof. First, note that in this case we also have that the
number of nodes is N ∈ Θ(C). The number of edges when
2 < β < 3 is:

M =

dC1/βe∑
i=1

i

⌊
C

iβ

⌋
= O

dC
1/βe∑
i=1

⌊
C

iβ−1

⌋ = Θ(C)

because in this setting β−1 > 1. Thus the number of nodes
of degree greater or equal to K in the graph is O

(
C
K

)
. So

for any function f(N) ∈ ω(1), the probability of randomly
picking a node of degree at least f(N) is o(1). Thus when we
sample a node u.a.r, w.h.p. it will have a constant degree.

We will now show that when sampling a single node,
w.h.p. also a randomly selected neighbor has degree smaller
than f(N), for any function f(N) strictly increasing with N
and such that f(N) ∈ ω(1) implying that w.h.p. the degree
of a random neighbor is also constant. For 2 < β < 3, the
number of endpoints of nodes with degree larger than K is:

Ad>K =

dC1/βe∑
i=dKe

i

⌊
C

iβ

⌋
= Θ

(
C
(
K2−β − C

2
β
−1
))

Here for α > 1,
∑n
i=k

1
iα

= Θ(k1−α − n1−α). The end-
points of edges incident to nodes of degree at least df(N)e
is therefore Ad>df(N)e ∈ o(N). The number of edges of de-
gree greater than f(N) is therefore sublinear in the number
of the nodes and so all but an o(1)-fraction of the nodes will
have no incident edge of degree at least f(N).

5. POLY-LOGARITHMIC SAMPLES
In this section we show our main result, namely that for

any β ∈ (1, 3) polylogarithmic-sized samples suffice to see
asymptotic ratios between the degree of a sample and its
set of friends. Intuitively, this implies that as long as we
have access to a relatively small size of the social network
it is possible to reach nodes of relatively high-degree. The
results here hold for any set of poly-logarithmic size, but we
discuss sizes of logN for simplicity.
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Lemma 5.1. Let S be a set of Θ(logN) nodes sampled
uniformly at random from G(β, p), for β ∈ (2, 3). Then,
w.h.p. the average degree in S is Θ(1).

Proof. From lemma 4.3, we know that the expected de-
gree of a sampled node is O(1). Thus, by linearity of expec-
tation, the expected total degree of the sample is O(logN).
By applying Markov’s inequality we get that the probability
that the total degree is in ω(logN) is o(1).

Proposition 5.2. Let S be a set of Θ(logN) nodes sam-
pled uniformly at random from G(β, p) for β ∈ (2, 3), and
let TS be a set obtained by selecting a single neighbor u.a.r.
from every node in S. Then, w.h.p.

d(TS)

d(S)
∈ ω(1)

Proof. The main idea behind is to show that w.h.p. TS
contains ω(1) nodes of degree O(logN) when we have a sam-
ple of size logN . We will first lower-bound the probability
of sampling one of these nodes and then show the result
holds w.h.p. when we sample logN elements. From the
proof of Lemma 4.3 we know that the number of endpoints
of edges incident to nodes with degree at least dc logNe,
Ad>c logN ∈ Θ

(
C

dc logNeβ−2

)
. Recall that Rd>c logN is the

number of rewired edges incident to nodes of degree bigger
than logN . Also in this case by linearity of expectation we
have E[Rd>c logN ] = pAd>c logN . Applying the method of
bounded difference with lipschitz condition 2 we have that
Rd>c logN is strongly concentrated around its mean. Thus,
the probability that a random edge of a node in S points to
a neighbor with degree at least c logN is at least:

Rd>c logN − 1

M
=
Θ
(

C
dc logNeβ−2

)
Θ(C)

= Θ

(
1

dc logNeβ−2

)
.

Now, let Yi be the random variable which equals 1 if the
randomly selected neighbor of the node i in S has degree at
least c logN and 0 otherwise. We have that:

E

[∑
i∈S

Yi

]
= logN · E[Yi] = logN

(
Ed>c logN

M

)
= Θ

(
logN3−β

)
.

Unfortunately the random variables Yi are neither inde-
pendent nor nicely correlated so we cannot use a Chernoff
bound to get a high probability result directly. To over-
come this difficulty, we show that the probability the sum
of the Yis is bigger than a value D dominates the proba-
bility that the sum of a random variable Xi that counts
the number of heads of a coin that gives heads with prob-

ability
(Ed>c logN )−logN

M
and tails otherwise is bigger than

a value D. Note that we are sampling only logN edges,
thus for every i the number of edges of degree bigger than
c logN that we still have not used is bigger or equal than
Ed>c logN − logN for all i. Thus the probability that Yi is
equal 1 is higher than the probability of the same event
for Xi for all i, hence the sum of the random variables
Yi dominates the sum of the random variables Xi. But
E[
∑
i∈S Xi] = Θ

(
logN3−β). Furthermore the Xi are inde-

pendent so by Chernoff we get that
∑
i∈S Xi ∈ Ω

(
logN3−β)

with probability 1−o(1). Thus using stochastic domination,

we have that w.h.p. at least Ω
(
logN3−β) sampled neigh-

bors have degree bigger than c logN .
Now in order to conclude the proof we have to show that

those Ω
(
logN3−β) selected neighbors of high degree are dif-

ferent nodes. To this end we will show that any node in the
graph is selected at most a constant number of times with
high probability, which will imply the result.

The node of maximum degree is the most likely to be se-

lected and it has degree C
1
β = Θ

(
C

1
β

)
so the probability

of sampling it in one sample is Θ(C
−1+ 1

β ) ∈ O(C−
1
2 ). Thus

the probability of sampling the highest degree node three

times in logN samples is smaller than
(

logN
3

)
Θ(C−

3
2 ) =

o(C−1). Thus, using the union bound, no node is sampled
more than twice with high probability. So the set of neigh-
bors with high probability contains Ω

(
logN3−β) distinct

nodes that have degree bigger or equal to c logN , thus the
average degree is w.h.p. at least Ω

(
logN3−β).

The case when β ∈ (1, 2]: The proof requires a different
approach when 1 < β ≤ 2. Roughly, the core idea is to
amplify the results of the single sample case to show that
w.h.p. we get at least one high degree node.

Proposition 5.3. Let S be a set of logN nodes sampled
uniformly at random from G(β) where 1 < β ≤ 2, and let
N(S) be a set obtained by selecting a single neighbor u.a.r.
from every node in S. Then, w.h.p. the ratio between the
sum of degrees of S and that of N(S) is ω(1).

In order to prove the proposition we first bound the aver-
age degree of the set of sample nodes:

Lemma 5.4. Let S be a set of Θ(logN) nodes sampled
uniformly at random from G(β), for 1 < β < 2. Then,

w.h.p. the average degree in S is Θ
(
C

2
β
−1
)

.

The proof uses the same Markov inequality argument as
in Lemma 5.1 and is omitted. To conclude the main proof
we show that with high probability we pick at least one very
high degree node.

Lemma 5.5. Let S be a set of Θ(logN) nodes sampled
uniformly at random from G(β, p) for β ∈ (1, 2), and let TS
be a set obtained by selecting a single neighbor u.a.r. from

every node in S. Then, w.h.p. d(TS) ∈ Ω
(
N

β−1
β
−ε
)

, for

any constant ε > 0.

Proof. The results follow directly from the previous lemma
and by the fact that we can amplify the probability of get-
ting a high degree node using Θ(logN) samples.

Using similar technique we can prove for β = 2 that the
ratio is in Ω (logα(N)), for any constant α > 0.

Theorem 5.6. For any β ∈ (1, 3), let S be a set of Θ(logN)
nodes sampled uniformly at random from G(β, p), and let TS
be a set obtained by selecting a single neighbor u.a.r. from
every node in S. Then, w.h.p. there is ratio between d(TS)
and d(S) is in ∈ ω(1).

6. EXPERIMENTS
We conducted several experiments to evaluate and further

study the friendship paradox in different online communi-
ties and social networks. Since analytical results only hold

82



Network # of Nodes # of Edges β C
Orkut 3,072,441 117,185,083 0.7470 223,989

LiveJournal 3,997,962 34,681,189 1.0322 520,041
Wikipedia 2,394,385 5,021,410 1.9548 80,033
YouTube 1,134,890 2,987,624 1.4212 160,927
DBLP 317,080 1,049,866 1.2048 64,983

SlashDot 82,168 948,464 1.2146 13,805
Enron 36,692 367,662 1.1636 11,322

Table 1: Networks’ statistics.

on stylized models, our primary motivation was to witness
the existence of the phenomenon in the data. We used 8
different publicly available data sets: the Orkut social net-
work [32], the Live Journal blogging community [32], the
Wikipedia author network [21], the YouTube social net-
work [32], the DBLP author network [32], the Slashdot user
community network [22], and the Enron email communica-
tion network [18]. These networks vary in size and degree
distribution and provide insight on the effect network pa-
rameters have on the friendship paradox.

We began by characterizing the networks according to
their degree distribution. We fitted each network to a power
law graph with different parameters of β and C = eα, using
methods that optimize over final sum of squares of residuals.
We summarize the main network statistics in Table 1. Note
that for almost all the networks 1 < β < 3. We first consid-
ered the effects of the sample size and network topology on
the friendship paradox, as we now describe.

The effects of sample size. To experimentally observe
the way in which the sample size affects the friendship para-
dox, we compared the degree distributions of sampled sets
and those of their neighbors as a function of the sample size.
For each network, for every j ∈ {10, 20, 30, . . . , 500} we sam-
pled j nodes u.a.r. and computed the degree distribution of
the sampled nodes and the average degree distribution of all
their neighbors. Note that the average degree distribution
of all their neighbors is the average of selecting a neighbor at
random from each node in the sample. Each such iteration
is a snapshot of the friendship paradox for a set of size j.
For each sample size j, we repeated this experiment 5 times.
We then computed the ratio between the average degree of
neighbors and the average degree in the sample. We plot
the results in Figure 3.

As the figure shows, the friendship paradox varies across
the different networks. The lowest gap we observed experi-
mentally was in the DBLP network where the ratio averaged
over all sample size iterations was 2.5 and the largest was
150 in the YouTube network. In all networks we see a large
gap in the first iteration when the sample size is 10 and the
neighbors’ average degree distribution is large.

In all networks there is a trend of decrease in the friendship
paradox as the sample size increases. This trend can be
intuitively explained using the analysis from the previous
sections: Since we showed that the friendship paradox is
large at already the small sample size of logN , this implies
that when the sample S is of size logN , the high degree
nodes of the graph are in the neighborhood S. As the sample
size increases we are more likely to sample high degree nodes
in S while the degree distribution of S will becomes smaller
as the high degree nodes are exhausted early.

Recall that in Section 4 we showed that with parameter
β ∈ (1, 2] the friendship paradox occurs even when the sam-
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Figure 6: The CDFs of the degrees of nodes and the average
degree of the neighbors in the network.

ple sizes are small. Interestingly, this phenomenon can also
be observed on the data sets we examined, all of which were
found to have parameters in this range, with the exception
of the Orkut network for which β < 1.

One hypothesis is that the friendship paradox occurs due
to the fact that in social networks neighbors indeed are
more likely to have a high degree. An alternative hypoth-
esis however could be that when considering neighbors, the
size of the sample is larger. That is, a set of S nodes
sampled at random generates a neighborhood of size n =
| ∪u is neighbor of S {u}| and it may be that a set of size n
sampled uniformly at random from the graph could have
a similar effect. To test this hypothesis, we conducted the
following experiment. For each j = 1, . . . , 100 we sampled
j nodes u.a.r. from the network which gave us a set of
neighbors Nj . We then sampled |Nj | nodes u.a.r. from the
network, and compared the ratios between their average de-
gree distribution. We depict the results in Figure 4 which
supports our hypothesis.

To further investigate the effect of the sample size on the
friendship paradox, we computed the degree distribution of
all the nodes in the networks and for each node we averaged
its’ neighbors’ degree distribution. In Figure 6 we plot the
CDF of these distributions for the DBLP, Epinions, Slash-
dot, and the Enron networks. In the figure, the nodes’ degree
distribution is depicted in red and the average neighbors’
degree distribution in blue. The expansion is the right shift
between the distributions. The CDF shows that the major-
ity of nodes’ degree distribution is well below the average
of their neighbors; however for nodes in top percentiles, this
is no longer true. As the sample size increases these nodes
are more likely to appear in the sample and diminish the
expansion effect.

The effects of network topology. It is easy to see ana-
lytically that the friendship paradox cannot occur in regular
graphs, where every node has the same degree. To view this
experimentally, for each network G = (V,E) in our data
sets we also generated a random graph by running a pro-
cess which assigns |E| edges uniformly at random between
|V | nodes. We used the same process as above to observe
the gap under different sample sizes. As expected, for these
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Figure 3: The ratio between average degrees of a sampled set and its neighbors.

graphs, regardless of sample size, the average degree of the
sample and that of their neighbors were nearly identical.

High degree nodes in neighbors vs. in sample.
To strengthen our results, we compared the average degree
of the top 1% and 10% of neighbors and degrees from the
sample. We plot the results in Figure 5 which show a clear
dominance of selecting from the set of neighbors.

Beyond the first circle. It seems natural to ask whether
the results extend beyond the immediate circle of friends.
The first question is whether nodes which are two hops away
from a randomly sampled node have a higher degree on av-
erage as well. The second question is whether the average
degree grows as we further explore the graph. For a given
set S, we use Ni(S) to denote the neighbors who are exactly
i hops away from S in the graph. To observe the change in
the degree distribution as a function of distance from a node,
we conducted the following experiment. For each network,
we sampled 5 nodes uniformly at random(u.a.r.), and con-
ducted a BFS crawl of 4 levels from all nodes in the set. In
each level we measured the degree distribution of all nodes
in the level, and computed its average. In Figure 7 we plot
the average degree as a function of the level, as well as the
percentage of increase in average degree between levels.

Figure 7 gives experimental evidence that suggests that
the friendship paradox would be most dramatic between the
sampled set and its immediate neighborhood. In the Slash-
dot and Epinions networks depicted in red and black, respec-
tively, the degree distribution is maximized in N1(S), and
in the Enron and DBLP networks the maximum is achieved
in N2(S). In all networks the largest increase in percentage
is between S and N1(S). This phenomenon also seems to be
a derivative of the fact that in power law graphs high degree
nodes are likely to be found in the immediate neighborhoods
of many nodes.
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Figure 7: The degree distribution of a sampled set and its
neighborhoods. Enron, Slashdot, Epinions, and DBLP cor-
respond to the blue,red, green,black lines, respectively.

Applications. Besides being a fundamental sociological
phenomena the friendship paradox has also practical appli-
cations. For example, it has already been used successfully
to design immunization strategy [5, 6]. In this section we
study an application of the friendship paradox to viral mar-
keting. Recall that in our setting we do not have complete
knowledge of the network and so we cannot use the classic
efficient algorithms for influence maximization.

In particular we consider the case where a node can seed
a cascade from only a random set of node or using their
random neighbor. From our experimental results in the pre-
vious setting it is clear that using random neighbors would
be the best choice in the well-studied voter model [8, 9, 26,
29]. To strengthen our results we consider the classic in-
dependent cascade and linear threshold [16] and we study
experimentally the effect of seeding a cascade in a random
set or in random set of neighbors. As shown in the results in
figure 8 also in this more challenging setting using a set of
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Figure 4: The ratio between average degree of a set of neighbors and a set of randomly sampled nodes from the graph of equal
size.

random neighbors clearly outperform using a set of random
nodes.

7. CONCLUSIONS
The friendship paradox is a fundamental phenomena in so-

cial networks, in this paper we strengthen the understanding
of this phenomena by showing that in a very large family of
random graph there is an asymptotic gap between the av-
erage degree of a set of random nodes and their neighbors.
Furthermore we complement our theoretical results with a
rich experimental analysis that show the relevance of the
phenomena. Finally we also describe a possible viral mar-
keting application of the friendship paradox.
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