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ABSTRACT
With the popularity of smart phones and mobile devices,
the number of mobile applications (a.k.a. “apps”) has been
growing rapidly. Detecting semantically similar apps from
a large pool of apps is a basic and important problem, as
it is beneficial for various applications, such as app recom-
mendation, app search, etc. However, there is no systematic
and comprehensive work so far that focuses on addressing
this problem. In order to fill this gap, in this paper, we ex-
plore multi-modal heterogeneous data in app markets (e.g.,
description text, images, user reviews, etc.), and present
“SimApp” – a novel framework for detecting similar apps us-
ing machine learning. Specifically, it consists of two stages:
(i) a variety of kernel functions are constructed to measure
app similarity for each modality of data; and (ii) an online
kernel learning algorithm is proposed to learn the optimal
combination of similarity functions of multiple modalities.
We conduct an extensive set of experiments on a real-world
dataset crawled from Google Play to evaluate SimApp, from
which the encouraging results demonstrate that SimApp is
effective and promising.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.4 [Information
Systems Applications]: Miscellaneous

General Terms
Algorithm and Experimentation

Keywords
Mobile applications; similarity function; multi-modal data;
multiple kernels; online kernel learning

1. INTRODUCTION
The proliferation of smart phones in recent years has led

to a huge and rapid growth of mobile applications (“app-
s”). According to a recent report [1], as of June 2014, there
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were over 1.5 million apps available on Google Play (one of
the largest app markets), and the number of apps grew by
around 60% between July 2013 and June 2014. With such
a large amount of apps, if a specific app is given as a query,
it is very difficult to find all other apps that are similar to
the query app. In this paper, two apps are considered to
be similar to each other if they implement related semantic
(high-level) requirements.

The problem of knowing the semantic similarity between
apps is very important because it has many benefits for dif-
ferent stakeholders in the mobile app ecosystem. For exam-
ple, it can help app platform providers improve the perfor-
mance of their app recommendation systems and enhance
the user experience of app search engines. For app devel-
opers, detecting similar apps can be useful for various pur-
poses, such as identifying direct competing apps, assessing
reusability (if open source) and many more. The potential
application value of this problem motivates our work.

Detecting similar apps is a nontrivial and difficult prob-
lem, as our goal is to find apps that share the same high-
level concept. In this paper, we try to solve this problem by
exploiting multi-modal heterogeneous data in app markets,
such as Google Play, Apple App Store, etc. Generally, ap-
p markets contain rich contents associated with apps, e.g.,
description text, screenshot images, user reviews, etc. Such
information usually describes conceptual characteristics of
apps, and thus is helpful in addressing our problem.

One of the key challenges is how to explore and combine
different modalities of data in app markets to measure the
similarity between apps in a principled way. Previous studies
[24, 2] provided simple solutions in their app recommenda-
tion systems, which were based on app description, title and
user reviews. However, these methods are far from compre-
hensive and systematic, since other kinds of rich metadata
have not been well exploited. To fill this gap, in this paper,
we present a novel framework named“SimApp” for modeling
app similarity by leveraging multi-modal heterogeneous data
in app markets via an online kernel learning approach. Fig-
ure 1 depicts the overview of the SimApp framework. First
of all, we measure the pairwise app similarity by defining a
variety of kernel (similarity) functions on different modali-
ties. Second, we assume the target app similarity function
is a linear combination of the multiple kernels, and then
employ online learning techniques [17] to learn the optimal
combination weights from streams of training data. Finally,
the learned app similarity function can facilitate a number
of applications. In particular, we conduct an extensive set of
experiments to evaluate the efficacy of SimApp based on a
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Figure 1: Overview of our proposed SimApp framework. The first block shows the data associated with apps. Only two
modalities, i.e., Name and Images, are presented for illustration. In the second block, we define two kernel functions K1 and
K2 to measure the pairwise app similarity in modalities of Name and Images, respectively. In the third block, we learn the
optimal combination weights (w1, w2, ...) by using our proposed Online Kernel Weight Learning (OKWL) algorithm. The
learned app similarity function f can be applied to a variety of applications presented in the last block.

similar app recommendation task. Preliminary empirical re-
sults have validated the effectiveness of SimApp in modeling
app similarity. Supplementary materials (including dataset-
s, code, etc.) are publicly available at1.

In summary, this paper makes the following contributions:

• We study the problem of modeling high-level mobile
app similarity. To the best of our knowledge, this is the
first systematic and comprehensive work that focuses
on this problem;

• We present SimApp as a novel framework to tackle this
problem, which fuses multi-modal data in app market-
s by learning the optimal combination weights from
streams of training data;

• We conduct an extensive set of experiments to evaluate
the performance of SimApp on a real-world dataset.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work; Section 3 gives the problem formulation;
Section 4 presents SimApp; Section 5 shows the empirical
results; finally Section 6 concludes this paper.

2. RELATED WORK
Our work relates to various studies in multiple important

research areas, ranging from data mining, machine learning,
software engineering to security. In this section, we group
related studies into four categories, and survey the literature
of each category in detail.

2.1 High-level Software Similarity
Our work closely relates to studies on detecting semanti-

cally similar software applications. To our best knowledge,
there are two lines of related work in this direction.

In [26], Zhu et al. explored the mobile app classification
problem, however we aim to address a different problem,
i.e., deriving a function to measure the high-level similar-
ity between apps. Thus far, little work has been done on
this problem. Two recent studies, which focused on app
recommendation, presented simple methods to measure the
similarity between apps by using meta-information in app

1https://sites.google.com/site/appsimilarity/

markets [24, 2]. Specifically, Yin et al. [24] treated the de-
scription of an app as a document and applied LDA [3] to
learn its latent topic distribution. In this way, each app is
represented as a fixed length vector. Then, the similarity
between two apps is computed as the cosine similarity of
their vectors. Similarly, Bhandari et al. [2] linked the title,
description and user reviews of an app as one document,
and then built the vector using the tf-idf weighting scheme.
They also used cosine similarity to calculate the pairwise
similarity. In contrast, we exploit more types of metadata
(e.g., images, numerics, etc.) in app markets, and propose a
principled way to combine such multi-modal heterogeneous
data to measure the high-level similarity between apps.

Another line of related work is to categorize or detect se-
mantically similar traditional software applications by using
low-level data, e.g., source code, byte code, etc [19, 15]. For
example, McMillan et al. [15] proposed an approach called
CLAN to detect similar Java applications using API calls.
Compared with this line of work, our work differs in that we
focus on using high-level (not implementation-level) data in
app markets to measure the similarity between apps, and
propose a very different solution.

2.2 Low-level Software Similarity
Our work is also related to studies on modeling low-level

software similarity, e.g., code clone detection [16]. Frag-
ments of code (low-level implementation) are identified as
code clones if they are exactly the same as or similar to
each other [16]. Many techniques have been developed to
detect code clones for traditional software applications [10,
12]. For example, Liu et al. [12] proposed a tool named G-
PLAG, which applies subgraph isomorphism comparison to
Program Dependence Graphs (PDGs) to detect plagiarized
(similar) code. Recently, there are some studies focusing
on detecting mobile app clones via analyzing byte codes or
opcodes [25, 5]. For example, Zhou et al. [25] presented
an app similarity measurement system named DroidMOSS
based on fuzzy hashing technique to detect app clones.

In general, our work differs from works in this area in two
aspects. First and foremost, the goal of our problem is differ-
ent. Our problem aims to find apps that implement similar
semantic requirements. Whether two apps are similar or not
is determined by the high-level functionalities they perfor-
m rather than their low-level implementations. Second, to
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achieve our goal, we explore a very different data source,
i.e., app markets, and present a new framework using very
different techniques.

2.3 Data Mining with App Markets Data
Our work is in general related to the emerging studies on

mining app markets data to facilitate various applications
[11, 7, 27, 6, 20]. For example, Lin et al. [11] proposed
a framework to incorporate version histories into app rec-
ommendation systems. Zhu et al. [27] presented a ranking
fraud detection system for apps, which is based on mining
apps’ historical ranking and rating records.

Although the nature of data studied in the above works
is similar to ours, the techniques used and research goals
are totally different. Our work aims to use the knowledge
discovered from app markets data to detect similar apps.

2.4 Online Learning
In this paper, we explore online learning techniques [9, 17]

to learn the best combination weights of various modalities
from streams of training data in the form of triplets.

Compared with batch learning, online learning has several
advantages, e.g., fast and simple, thus making it applicable
to applications in a variety of domains [14, 4, 22, 23, 21].
For example, Chechik el al. [4] proposed an online learning
algorithm named OASIS to incrementally learn a better dis-
tance metric from image data for retrieval. Compared with
the above studies, our work differs in two points. First, we
formulate and solve a challenging problem in a completely
different domain with its distinct features. Second, the goal
of our proposed technique is different, i.e., learning a kernel
function from multi-modal heterogeneous data.

Our work is also related to recent work on Online Mul-
tiple Kernel Learning (OMKL) [8]. In general, our work
differs from studies in this area in two aspects. First, we
focus on a more specific problem, i.e., detecting similar app-
s, and present the SimApp framework to solve it. Second,
the OMKL technique aims to learn the optimal weights of
multiple kernels for classification tasks, while the goal of our
proposed online learning algorithm in SimApp is to learn the
app similarity function from streams of triplets.

3. PROBLEM FORMULATION
In this section, we formally formulate the problem of mo-

bile app similarity modeling using app markets data.

Definition 1 (Mobile App Similarity Modeling).
Given a collection of mobile apps A, the objective of mo-
bile app similarity modeling problem is to learn a function
f : A×A → R+, such that f(ai, aj) measures the semantic
similarity between app ai and app aj .

In our problem, two apps are considered to be similar to
each other if they implement related semantic requirements.
An intuitive example is shown in Figure 2 to better under-
stand our problem. Figure 2 presents the names and logos
of four popular apps. Obviously, “Facebook” and “Google+”
are both social networking apps, so they are considered to
be similar to each other in our problem. In the same way,
“Dropbox” is similar to“Google Drive”as both apps are used
to store and share files. “Facebook” is not similar to “Drop-
box” as they perform very different functionalities. The goal

of our problem is to learn a function f , which assigns high-
er scores to pairs of more similar apps, e.g., f (“Facebook”,
“Google+”) > f (“Facebook”, “Dropbox”).

Facebook Google+ Dropbox Google Drive

Figure 2: Four popular mobile apps.

In Definition 1, a key element is a mobile app ai ∈ A,
which is defined as follows.

Definition 2 (Mobile App). Each mobile app ai ∈
A is modeled as a k-dimensional tuple ai = [mi1,mi2, ...,mik],
where each mij(1 ≤ j ≤ k) is a modality (attribute) of mo-
bile app ai.

In this work, we explore the multi-modal heterogeneous
data in app markets to model apps. Specifically, we use
the modalities shown in Table 1 to represent an app, since
they are supported by most mainstream app markets. The
“Modality”column of Table 1 shows the names of the modal-
ities, and the “Description” column briefly describes these
modalities. Figure 3 shows an example of the multi-modal
information associated with the “Facebook” app on Google
Play. From Table 1 and Figure 3, we can see that, these
multi-modal data in general describe high-level character-
istics of apps, and thus is suitable for solving the problem
presented in Definition 1.

Table 1: The modality set of mobile apps.

ID Modality Description

1 Name The title of the app.

2 Category The category label of the app.

3 Developer The developer of the app.

4 Description The description text of the app.

5 Update The latest changes to the app.

6 Permissions The permissions required by the app.

7 Images The screenshots of the app.

8 Content Rating The content level of the app.

9 Size The storage space needed for the app.

10 Reviews The comments posted by users.

1 Name: Facebook 2 Category: Social 3 Developer: Facebook

4 Description:  Keeping up with friends is faster than ever

5 Update:  Like posts, photos and pages when you are offline

6 Permissions:  android.permission.GET_ACCOUNTS

7 Images:  

8 Content Rating: 3

9 Size: 22.14MB

10 Reviews: There should be an option to make Most 

Figure 3: Example of the multi-modal information associ-
ated with the “Facebook” app on Google Play. The circled
numbers correspond to the IDs shown in Table 1.
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4. APP SIMILARITY MODELING
In this section, we propose the SimApp framework for mo-

bile app similarity modeling. As shown in Figure 1, SimApp
consists of two stages. First, we define a series of 10 kernel
(similarity) functions in different modalities (as shown in Ta-
ble 1) for measuring the similarity between apps (see Section
4.1). Second, we assume the target app similarity function f
is a linear combination of the multiple kernels, and present
a novel Online Kernel Weight Learning (OKWL) algorithm
to learn the optimal combination weights of these 10 kernels
from streams of training triplets (see Section 4.2).

4.1 Kernels for Measuring App Similarity
In machine learning, kernel is essentially a mapping func-

tion that transforms a given low-dimensional space into some
higher-dimensional (possibly infinite) space. A kernel func-
tion can be thought of as a pairwise similarity function. In
this subsection, we build a variety of kernel functions, de-
noted as Kk(1 ≤ k ≤ 10), to measure app similarity for each
modality shown in Table 1. Without loss of generality, all
kernel values are within the range of [0, 1].

4.1.1 App Similarity using Name
Each mobile app has a name (title), which is given by its

developer. Since app name is the first thing potential users
see when they browse the app markets, it is often descriptive,
explicit, and stating what the app can do for users. When
two app names share many common words, it is reasonable
to infer that these two apps perform similar functionalities.
As app name is essentially a short string of characters, we
employ the well-known string kernel [13] to measure the app
similarity in this modality. Let si and sj denote the names
of app ai and app aj , respectively. Then, we have,

K1(ai, aj) =
∑
u∈Σ∗

φu(si)φu(sj)

where Σ∗ denotes the set of all subsequences, u denotes a
subsequence, and φ is a feature mapping function. For space
limitation, please refer to [13] for more details about string
kernel. In particular, we set the max length of subsequences
equal to 3, and the decay factor equal to 0.5.

4.1.2 App Similarity using Category
To make it more easier for users to browse and discover

apps, app markets usually define a list of categories to orga-
nize apps. In general, apps belong to the same category are
more related to each other than apps in other categories.
Therefore, we can use such category information to mea-
sure the similarity between apps. Let ci and cj denote the
category labels of app ai and app aj , respectively, thus,

K2(ai, aj) =

{
α if ci == cj
0 if ci 6= cj

where α is a pre-defined parameter. For simplicity, we set α
equal to 1.0 in this work.

4.1.3 App Similarity using Developer
Every app is created by one developer, who is either an

individual or a company. A developer usually maintains a
list of apps that belong to different categories in the app
market. We collect all the category labels in the app market
and build a category dictionary with size dc. Then, the
developer of an app can be converted into a feature vector

d ∈ Rdc using the tf-idf weighting scheme. Here, tf is the
number of the developer’s apps that belong to a category,
and idf is the total number of apps in that category. Let
di and dj represent the developers of app ai and app aj ,
respectively. We measure the app similarity in this modality
by using the RBF (radial basis function) kernel, which is
usually a reasonable first choice,

K3(ai, aj) = exp

(
−‖di − dj‖2

2σ2

)
where σ is the bandwidth parameter. If not specified, we set
σ as the average Euclidean distance in this work.

4.1.4 App Similarity using Description
The description text of an app usually describes its main

functionalities provided for users. If two app descriptions
are related to each other, probably there are some function
overlaps between these two apps. We collect all the descrip-
tions and treat them as documents. Then, we apply LDA
[3] to learn the latent topic distribution for each of them. In
this way, the description of an app is represented as a fixed
length vector t ∈ Rdt , where dt is the number of discov-
ered topics (we set dt = 1000). The i-th dimension of this
vector is the distribution over the i-th topic. Let ti and tj
denote the descriptions of app ai and app aj , respectively.
We use the normalized liner kernel, which is widely used for
text classification, for measuring the app similarity in this
modality, formally,

K4(ai, aj) =
tTi tj
‖ti‖ ‖tj‖

Remark. K4 is exactly the same as the method used in [24]
to measure the app similarity. Our purpose in doing so is to
make more fair comparisons in our experiments (see Section
5.4). Without loss of generality, the scheme used in K4 is
also employed for other text data in this work.

4.1.5 App Similarity using Update
The update text is provided by developers to keep users

informed about changes made to the latest version of apps.
Following the same scheme used for description text, each
update of an app is converted into a fixed length vector
u ∈ Rdu , where du is the number of latent topics (we set
du = 1000). Let ui and uj denote the updates of app ai and
app aj , respectively. Then, we measure the app similarity
in this modality by using the normalized liner kernel,

K5(ai, aj) =
uT
i uj

‖ui‖ ‖uj‖

4.1.6 App Similarity using Permissions
Each app has a list of permissions that it needs to ac-

cess specific functionalities or information on users’ smart
phones. To represent the permissions of an app, we use the
well-known bag-of-word (BoW) model. First, we collect al-
l the permissions and compile a permission dictionary with
size dp. Then, the permissions of an app are transformed in-
to a feature vector in Rdp using the tf-idf weighting scheme.
In such a way, an app ai can be represented by a feature
vector pi ∈ Rdp . We also use the RBF kernel to measure
the app similarity in the permission space, formally,

K6(ai, aj) = exp

(
−‖pi − pj‖2

2σ2

)
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4.1.7 App Similarity using Images
In app markets, app developers can upload some screen-

shot images to show their apps’ features and functionalities.
We use the bag-of-(visual) word model for visual feature rep-
resentation. Specifically, we first compute the SIFT descrip-
tors for each screenshot image. Then, we apply the K-means
algorithm over all the SIFT descriptors, and obtain di (we
set di = 2000) clusters as the visual words. Finally, each
given image is represented as a histogram of visual word-
s, i.e., a fixed length feature vector i ∈ Rdi . Since an app
a usually has more than one screenshot image, we use the
centroid of all images belong to app a to represent it in the
visual space, formally,

a =
∑
m

im
|a|

where im denotes one image of app a, and |a| is the total
number of images that belong to app a. We measure the
visual similarity between two apps ai and aj using the RBF
kernel, formally,

K7(ai, aj) = exp

(
−‖ai − aj‖2

2σ2

)
4.1.8 App Similarity using Content Rating

The content rating of an app provides users concise and
impartial information about the content and age appropri-
ateness of this app. Let cri and crj denote the content
ratings of app ai and app aj , respectively. The similarity
between ai and aj in this modality is given by,

K8(ai, aj) =

{
β|cri−crj | if |cri − crj | < crmax − crmin

0 if |cri − crj | == crmax − crmin

where crmax and crmin are the maximum rating and mini-
mum rating, respectively, in the target app market content
rating system. β is a decay paratemer which we set equal to
1/3 in this work.

4.1.9 App Similarity using Size
The size information indicates the storage space required

by the apps. Two apps have large difference in size tend to
be not similar to each other. Let si and sj denote the size of
app ai and app aj , respectively. We measure the similarity
between ai and aj in this modality as follows,

K9(ai, aj) = exp

(
−|si − sj |

γ

)
where we set γ as the median size (unit: MB) of all apps in
our data collection.

4.1.10 App Similarity using Reviews
User review is a crucial component of app markets. Each

app usually has a list of reviews posted by different users.
These user reviews contain rich information on various as-
pects of apps (such as functionality, quality, performance,
etc.), thus could be useful for measuring app similarity. To
represent the reviews of an app, we concatenate all the re-
views of one app together as a document. Then, following
the same scheme employed for description and update text,
for each app ai, we denote ri ∈ Rdr as its review topic-
s distribution, where dr is the number of discovered topics
(we set dr = 1000). Finally, we employ the normalized liner

kernel to quantify the app similarity in this modality,

K10(ai, aj) =
rTi rj
‖ri‖ ‖rj‖

4.2 Learning Optimal Weights for Kernels
In the previous subsection, we introduce various kernel

functions (K1 ∼ K10) to measure the similarity between
apps in different modalities. The next challenge is how to
find the best way to combine these kernels. In this work,
we assume the target app similarity function f is a linear
combination of the multiple kernels, i.e.,

K(ai, aj ; w) =

n∑
k=1

wkK
k(ai, aj) (1)

where ai and aj are the i-th and j-th app, respectively.
K(ai, aj ; w) represents the target app similarity function f .
Kk is the kernel defined under the k-th view (modality) of
apps, n is the total number of kernels, and w ∈ Rn is the
weight vector with each element wk represents the weight of
the k-th kernel.

One simple way is to let humans assign the weights of d-
ifferent kernels. However, such strategy depends too much
on domain knowledge and often cannot find the best com-
bination. Therefore, in this work, we explore online learn-
ing techniques to learn the optimum combination weights w
from streams of triplets. The reasons we choose the online
learning scheme are that (i) it can avoid the expensive re-
training cost when new training data arrives; and (ii) it is
highly efficient and scalable for large scale applications.

4.2.1 Relative Similarity Learning
In the training phase, we assume a collection of training

instances is given sequentially in the form of triplet [4], i.e.,

T = {(ai, a+
i , a

−
i ), i = 1, ...,m}

where each triplet (ai, a
+
i , a

−
i ) indicates that app ai is more

semantically similar to app a+
i than a−i . Here m is the total

number of triplets in the training data. We aim to learn
the target app similarity function K(ai, aj ; w) in Equation
(1), which assigns higher similarity scores to pairs of more
relevant apps, i.e.,

K(ai, a
+
i ) > K(ai, a

−
i ), (ai, a

+
i , a

−
i );∀i

In such a triplet setting, we only need to give the relative
order of similarity rather than an exact measure of similarity,
thus is more feasible in practice. Such triplet instances can
be generated in practice as follows. Let A denote a set of
training apps. In the 1st step, for each app ai ∈ A, we
need to create a list of apps that are relevant to ai, denoted
as L(ai). This can be achieved through various ways. For
example, we can use existing app search engines to find apps
that share the same query. In the 2nd step, in order to
build a training triplet (ai, a

+
i , a

−
i ), we can first uniformly

sample an app ai from A; then uniformly sample an app a+
i

from L(ai); and finally uniformly sample an app a−i from
A− L(ai).

4.2.2 Online Kernel Weight Learning Algorithm
We propose an online kernel learning algorithm which is

an application of the stochastic sub-gradient method [18].
The algorithm learns from side information in the form of
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triplet as described above. Our goal is to learn a similarity
function K(ai, aj ; w), for all triplets in T satisfying,

K(ai, a
+
i ) > K(ai, a

−
i ) + ε

where ε is a margin factor (should be positive) which is set
equal to 1.0 in our experiments. For each triplet (ai, a

+
i , a

−
i ),

we define the following hinge loss,

l(ai, a
+
i , a

−
i ) = max{0, ε−K(ai, a

+
i ) +K(ai, a

−
i )}

= max{0, ε−w · s+
i + w · s−i }

where s+
i = [K1(ai, a

+
i ), ...,Kk(ai, a

+
i ), ...,Kn(ai, a

+
i )]T and

s−i = [K1(ai, a
−
i ), ...,Kk(ai, a

−
i ), ...,Kn(ai, a

−
i )]T .

Our goal is to find the minimizer of the object function,

min
w

λ

2
‖w‖2 +

1

m

m∑
i=1

l(ai, a
+
i , a

−
i ) (2)

where λ is a regulization parameter.

Algorithm 1: Online Kernel Weight Learning

Input: T , λ, T , η0

1 Initialize weights: w1,k = 1/n, ∀k = 1, ..., n
2 for t = 1, 2, ..., T do
3 Set ηt = η0/(1 + λη0t).

4 Receive one triplet (ait , a
+
it
, a−it) from T .

5 Compute s+
it

and s−it .

6 if wt · s+
it
−wt · s−it > ε then

7 update wt+1 ← (1− ηtλ)wt

8 end

9 else if wt · s+
it
−wt · s−it < ε then

10 update wt+1 ← (1− ηtλ)wt + ηt(s
+
it
− s−it)

11 end

12 end
Output: wT+1

Next, we describe the core procedure of our proposed
Online Kernel Weight Learning (OKWL) algorithm for solv-
ing the optimization problem given in Equation (2) in detail.

Algorithm 1 shows the pseudo-code of the OKWL al-
gorithm. The inputs include (i) a set of training triplet-
s T ; (ii) a regulization parameter λ; (iii) a learning rate
constant η0; and (iv) the number of iterations T . Among
them, the proper η0 can be determined experimentally by
using a sample of training triplets. Initially, we set w1 =
[w1,1, ..., w1,k, ..., w1,n]T , where w1,k = 1/n,∀k = 1, ..., n, n
is the number of kernels, so each kernel is assigned the same
weight (Line 1). For each training iteration t, we first set the
learning rate ηt = η0/(1+λη0t) (Line 3). Then, for a triplet
(ait , a

+
it
, a−it) received from T (Line 4), we compute s+

it
and

s−it , respectively (Line 5). The objective function based on
this triplet is:

L(w; it) =
λ

2
‖w‖2 + l(w; (ait , a

+
it
, a−it)) (3)

Then, the sub-gradient of L(w; it) with respect to w is
given by:

Ot =
∂L(w; it)

∂w
=

{
λwt if wt · (s+

it
− s−it ) > ε

λwt + s−it − s+
it

if wt · (s+
it

− s−it ) < ε

We then update wt+1 ← wt − ηtOt (Line 6-11), formally:

wt+1 =

{
(1− ηtλ)wt if wt · (s+

it
− s−it ) > ε

(1− ηtλ)wt + ηt(s
+
it

− s−it ) if wt · (s+
it

− s−it ) < ε

Finally, after the predefined T iterations, we output the
learned weight vector wT+1 as the optimal combination of
different kernels.

5. EMPIRICAL EVALUATION
In this section, we report the results of an extensive set of

experiments based on a similar app recommendation task.

5.1 Dataset
Our empirical evaluation is based on a real-world dataset

crawled from Google Play. For each app, we collected all the
data (associated with it) available on Google Play, including
app name, description, screenshots, user reviews, etc. Note
that, each kernel function defined in Section 4.1 corresponds
to a specific kind of data we have collected. This yielded a
dataset that consists of 21,624 apps from 42 different cate-
gories. We think such a scale is enough to work with to draw
solid conclusions. The“Total”column of Table 2 shows some
statistics of the whole dataset. To facilitate our empirical
studies, we further split the whole dataset into a training set
and a test set (see “Training” and “Test” columns in Table
2). Specifically, from each of the 42 categories, we randomly
choose about 80% of the apps in the category as the training
data and the remaining as the test data.

Table 2: Some statistics of the Google Play dataset. The
notation “#” represents the number of some object.

Set Training Test Total

# Apps 16,955 4,669 21,624

# Permissions 153,639 42,869 196,508

# Reviews 16,872,290 5,037,246 21,909,536

# Images 136,792 37,601 174,393

5.2 Evaluation Measures
We introduce the evaluation metrics used in our empiri-

cal studies. For each query app, all other apps are ranked
according to their similarities to the query app. Thus, we
adopt two rank-based metrics, i.e., Precision@K and mean
Average Precision (mAP), which are presented below,

• Precision@K: For each query app, we compute the
proportion of similar apps in the top-K results. When
averaged across all query apps, this yields the Preci-
sion@K measure.

• mean Average Precision: mAP for a set of app
queries is the mean of the average precision scores for
each app query, i.e.,

mAP =

∑Q
q=1 AveP (q)

Q

where Q is the number of app queries, and AveP (q)
is the average precision for an app query q. Average
precision for each app query is the average value of all
the precision values from the rank positions that have
a similar app.
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Table 3: The base kernels and the optimal weights learned by OKWL (η0 = 0.01, λ = 10−4, T = 100K). The largest weight
is in blue color, and the lowest weight is in red color.

Kernel K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Modality Name Category Developer Description Update Permissions Images Content Rating Size Reviews

Weight 0.1679 0.1676 0.0827 0.1288 0.0455 0.0027 0.0960 0.0394 0.0353 0.2338

5.3 Experimental Setup

5.3.1 Build an App-App Relevance Matrix
To quantitatively evaluate SimApp, we need to create an

app-app relevance matrix RAA as our ground truth label-
s. Google Play has a “Similar” functionality, which recom-
mends users a list of similar apps for each app. We collected
a set of m such lists L = {l1, l2, ..., lm} from the web portal
of Google Play, where lk(1 ≤ k ≤ m) is the k-th list. Given
two apps ai and aj , let freq(ai, aj) denote the number of
lists they both appear in. We consider ai and aj are similar
to each other if and only if freq(ai, aj) exceeds a threshold
θ (which is used to reduce noise), formally,

RAA(ai, aj) =

{
1 if freq(ai, aj) ≥ θ
0 if freq(ai, aj) < θ

For the training set and the test set shown in Table 2, we
build two matrices Rtrain

AA and Rtest
AA , respectively, where we

use the threshold θ = 2.

5.3.2 Training Triplets Sampling
We use Rtrain

AA to sample training triplets T ′ = {(ai, a+
i ,

a−i ), i = 1, ...,m} as follows. Let A be all the apps in the
training set. First of all, we randomly sample an app ai
from A. Then we uniformly sample an app a+

i from the set
of apps which are similar to ai (Rtrain

AA (ai, a
+
i ) = 1). Finally,

we uniformly sample an app a−i from the set of apps which
are not similar to ai (Rtrain

AA (ai, a
−
i ) = 0). In such a way, we

generate a set of 100K training triplets T ′ which is used to
train OKWL in our experiments.

5.3.3 Choose the Learning Rate Constant
The learning rate constant η0 is a key parameter of the

OKWL algorithm, which is determined experimentally as
follows. Given the training triplets T ′, we fix λ = 10−4,
T = 30K, and then run OKWL with different values of
η0 ∈ [0.0001, 0.1]. Figure 4 traces the training error over the
training triplets as it progresses during learning. From the
results shown in Figure 4, we can see that, larger values of η0

(i.e., 0.1 and 0.01) are more attractive, because OKWL (i)
achieves better asymptotic performance; and (ii) converges
much faster. Between 0.1 and 0.01, to make OKWL more
robust, we choose η0 = 0.01 as its training error curve shown
in Figure 4 is more smooth.

5.3.4 Compared Methods
We compared the following methods in our experiments:

• Single: A single kernel defined in Section 4.1. We ex-
amine K1 ∼ K10 one by one.

• Uniform: K1 ∼ K10 are uniformly combined with each
kernel assigned the same weight.

• SimApp: We use the proposed OKWL algorithm for
combining K1 ∼ K10. Specifically, we run OKWL
with η0 = 0.01, λ = 10−4 and T = 100K, the learned
weights of kernels K1 ∼ K10 are presented in Table 3.
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Figure 4: Training error of OKWL as a function of the num-
ber of iterations. η0 ∈ {0.1, 0.01, 0.001, 0.0001}.

5.4 Quantitative Results
We evaluate the efficacy of SimApp by measuring the sim-

ilar app recommendation accuracy. Specifically, for each
query app in the test set shown in Table 2, we rank all
other test apps according to their similarities to the query
app, and extract top ones as recommended apps.

In the first experiment, we evaluate and compare all the
methods listed in Section 5.3.4 in terms of Precision@K (1 ≤
K ≤ 5). We use Rtest

AA (described in Section 5.3.1) as the
ground truth. Since the largest K value in this experiment
is 5, we only use test apps that have at least 5 similar apps
as query apps, thus resulting in a total of 1910 query apps.
Figure 5 shows the top-K app recommendation results, from
which we can draw some observations.
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Figure 5: The average precision of top-K similar app recom-
mendation (better viewed in color).

First of all, with K varying from 1 to 5, SimApp always
achieves the best performance among all the evaluated meth-
ods. By looking into the results, we find that (i) compared
with Uniform combination, SimApp improves the precision
scores by more than 20%; and (ii) the top-1 and top-5 pre-
cision scores achieved by SimApp are 0.610 and 0.455, re-
spectively. Such fair results indicate that SimApp is able to
model the app similarity.
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Second, the Uniform combination performs better than
all the single kernels (K1 ∼ K10), and reports the second
best results. This fact indicates that the idea of combining
different modalities is helpful in measuring app similarity.
However, such kind of naive combination cannot yield the
best results, thus learning the weights of different modalities
in an effective way is needed.

Third, the Reviews kernel (K10) reports the best per-
formance among all the single kernels. Its relatively good
results indicate that user review is the most informative
modality when measuring app similarity. Two possible rea-
sons are: (i) users often discuss functionalities of apps in the
reviews; (ii) users tend to compare apps with their similar
competitors in their reviews.

Fourth, the Description kernel (K4) attains the second
best results among all the single kernels. Note that, K4 is
used in [24] as a part of their app recommendation system.
From Figure 5, we can see that, SimApp performs much
better than K4. For example, SimApp achieves 0.610 while
K4 only achieves 0.331 in terms of Precision@1. This fact
indicates that SimApp can improve the overall performance
of the app recommendation system proposed in [24].

Finally, the Content Rating kernel (K8) and the Size ker-
nel (K9) report the worst performance among the 10 single
kernels. For K from 1 to 5, their precision scores are most
zero consistently. Such results indicate that Content Rating
and Size are the least useful modalities.

In the second experiment, we evaluate and compare all
the methods listed in Section 5.3.4 in terms of mAP. We also
use Rtest

AA as the ground truth and all the apps (that have
at least one similar app) in the test set shown in Table 2
as query apps. The mAP results are presented in Figure 6,
from which we can draw two observations.
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Figure 6: Evaluation of the mAP performance.

First of all, SimApp again performs the best among all
the evaluated methods, which further validates its efficacy
in app similarity modeling.

Second, the mAP results attained by all the methods are
not high, e.g., 0.331 achieved by SimApp. This could be
the result of several reasons. Most importantly, our labels
that measure the pairwise app similarity (i.e., Rtest

AA ) may
be partial. This means that some pairs of apps that are
similar to each other are not labeled as such; while some
pairs of apps that are not similar to each other are labeled
as such. The partial labels would lead to an underestimate
of the performance of SimApp (in terms of both mAP and
Precision@K). To obtain a more accurate estimate of the

real power of SimApp, we conduct a human evaluation ex-
periment which is presented in the next subsection.

5.5 Human Evaluation Experiment

5.5.1 Setup
We choose a subset of test apps as query apps used in

this experiment as follows. For each test app in the test set,
we retrieve its top-10 similar apps as determined by Google
Play’s (web portal)“Similar” functionality (“Google Play” in
short). If all these 10 similar apps exist in our whole dataset
shown in Table 2, we select this test app as a candidate
query app. In such a way, we get a set of candidate query
apps covering 32 different categories. Then, for each of the
32 categories, we randomly select one query app from the
candidates, thus obtaining a total number of 32 query apps.

For each query app, apart from the top-10 similar apps as
ranked by Google Play (verified on July 9th, 2014), we also
retrieved its top-10 similar apps (from the whole dataset) as
determined by SimApp (using the weights shown in Table 3).
All 32 query apps were presented to two human annotators
(the first and the third authors), asking them to label which
of the 20 retrieved apps are semantically similar to the query
app. The two annotators made the first round of labeling
independently, then had a discussion on those inconsistent
cases, and finally reached an agreement. We collected the
final labeling results and calculated Precision@K values.

5.5.2 Results
Table 4 shows the average precisions across all 32 query

apps. From the results shown in Table 4, we can draw the
following observations. First, SimApp consistently achieves
better results than Google Play throughout the full range
of K evaluated. Second, SimApp attains 0.875 and 0.819 in
terms of Precision@1 and Precision@5, respectively, which
are much higher than the values calculated using Rtest

AA as
shown in Figure 5. Such good results indicate that SimApp
is effective in modeling app similarity, and potentially valu-
able for stakeholders in the mobile app ecosystem (even for
those who have built some app similarity functions).

Table 4: Precision@1, @5, @10 of Google Play and SimApp.

Precision@1 Precision@5 Precision@10

Google Play 0.688 0.725 0.663
SimApp 0.875 0.819 0.769

Threats to Validity. Despite the encouraging results, this
study has three threats to validity. First, Google Play’s
“Similar” function is a “black box” to us, it may consid-
er more factors (e.g., popularity) than just similarity mea-
sure, thus may influence the comparison results. Second,
our dataset is relatively small, which makes it difficult for
SimApp to retrieve similar apps for some query apps, thus
lowering SimApp’s performance. Third, the limited number
of query apps and subjectivity (due to expensive cost of la-
beling) may affect the accuracy of the results. We plan to
examine these threats in great efforts in our future work.

Next, in Figure 7, we show two successful (failure) cases of
SimApp (Google Play). The first column of Figure 7 shows
two query apps, i.e., “AntiVirus Security - FREE” (antivirus
app) and “Subway Surfers” (parkour game). For each query
app, we list two lines of top-10 results, where the upper line
is ranked by Google Play, and the lower line is ranked by
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Figure 7: Two examples of top-10 recommended similar apps (better viewed in color).

SimApp. The name of each app is shown beneath the app
logo. One app is similar (not similar) to the query app if its
name is in black (red) color.

The first example presents the query app “AntiVirus Se-
curity - FREE”. The top-10 results ranked by Google Play
are bad, since only “Lookout Security & Antivirus” (5th)
and “Free Antivirus & Security” (10th) are similar to the
query app, and the rest 8 apps bear no semantic similarity
as they are either communication tools or web browsers. In
contrast, SimApp achieves much better results. All 10 apps
ranked high provide antivirus functionalities, and thus are
similar to the query app. In the following, we illustrate the
behaviour of SimApp and explain why it performs well in
this example via the results shown in Table 5.

Table 5 presents the similarity scores between the query
app “AntiVirus Security - FREE” (denoted as q) and a list
of apps computed by SimApp. The “Apps” row of Table
5 lists 10 apps, where apps a1 ∼ a5 and a6 ∼ a10 are the
top-5 apps ranked by SimApp and Google Play, respectively
(shown in Figure 7). Every cell (ai,K

j) (i, j ∈ [1, 10]) in Ta-
ble 5 represents the kernel value Kj(ai, q), which measures
the similarity between ai and q in the j-th modality. The
“Total” row shows the overall similarity scores computed by
using the kernel weights shown in Table 3. The “Rank” row
presents the rank positions given by SimApp.

Some observations can be drawn from the results shown in
Table 5. First, app a1 “AntiVirus PRO Android Security” is
reasonably ranked 1st by SimApp, since most kernel values
Kj(a1, q)(j ∈ [1, 10]) are high. Second, app a6 “WhatsApp
Messenger” (not similar to q), which is ranked 1st by Google
Play, is reasonably ranked much lower by SimApp (401st).
The reason is that, although K2(a6, q) = 1.00, other kernel
(especially kernel with large weight) values are low, e.g.,
K10(a6, q) = 0.07. Similarly, for apps a7, a8, a9 (all are not
similar to q), which are ranked high by Google Play, SimApp
also correctly assigns them low ranking positions.

The second example shown in Figure 7 presents the query
app “Subway Surfers”, which is a popular parkour game.
The top-10 results ranked by Google Play are also not very
good. Half of top-10 results are not semantically similar to
the query app as they are not parkour games. For example,

the ranked 1st game “Fruit Ninja Free” is a popular juicy
action game. SimApp again attains much better results than
Google Play. All top-10 results share the same concept with
the query app, i.e., “running”.

6. CONCLUSION AND FUTURE WORK
This paper presents SimApp, a novel framework for find-

ing similar mobile apps. We found encouraging results from
a set of experiments, which not only validate the efficacy
but also show the potential application prospect of our tech-
nique. In the future, we plan to (i) explore more modalities
of apps; and (ii) apply our technique to solve other challeng-
ing tasks, e.g., finer-granularity app categorization.
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