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ABSTRACT

Online controlled experiments, also called A/B testing, is
playing a central role in many data-driven web-facing com-
panies. It is well known and intuitively obvious to many
practitioners that when testing a feature with low cover-
age, analyzing all data collected without zooming into the
part that could be affected by the treatment often leads to
under-powered hypothesis testing. A common practice is to
use triggered analysis. To estimate the overall treatment ef-
fect, certain dilution formula is then applied to translate the
estimated effect in triggered analysis back to the original all
up population. In this paper, we discuss two different types
of trigger analyses. We derive correct dilution formulas and
show for a set of widely used metrics, namely ratio metrics,
correctly deriving and applying those dilution formulas are
not trivial. We observe many practitioners in this industry
are often applying approximate formulas or even wrong for-
mulas when doing effect dilution calculation. To deal with
that, instead of estimating trigger treatment effect followed
by effect translation using dilution formula, we aim at com-
bining these two steps into one streamlined analysis, pro-
ducing more accurate estimation of overall treatment effect
together with even higher statistical power than a triggered
analysis. The approach we propose in this paper is intuitive,
easy to apply and general enough for all types of triggered
analyses and all types of metrics.
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1. INTRODUCTION

In the recent decade, online controlled experiment, also
known as A/B testing, has become a must for most of data
driven web facing companies. The strength of A/B testing
lies in the ability to establish causal relationship between the
treatment tested and the effect using simple data collection
mechanism that can be implemented as embedded compo-
nents into existing web services (2). Unlike other statistical
methods for causal inference which typically rely on strong
assumptions that cannot be verified and therefore tend to
produce more false assertions than expected (4), A/B test-
ing makes few assumptions. It is also intuitively easy for
non-statisticians to understand. In A /B testing, experimen-
tation units, usually users, are randomly split into control
group and treatment group. Traffic in the two groups are
then exposed to two different versions of the web service. Af-
ter collecting data from the two groups over a period of time,
we analyze the data at the end of the experiment to compare
the two groups, see Figure Because of the random traffic
splitting, the two groups are the same by design except for
exposure to different versions of the web service. Any true
difference between the two must come from the difference of
the two versions. In the language of Rubin Causal Model,
randomization makes sure that the treatment assignment is
tgnorable ().

In online controlled experiment, we typically use standard
statistical inference methods. There are often two goals:

1. Hypothesis testing: Test the hypothesis that there is
no difference between the treatment and the control. If
the hypothesis is rejected, we know the treatment has
an effect. The confidence level is typically controlled
at 5% false positive(claiming an effect by mistake).

2. Point estimation: Estimate the treatment effect. The
result is usually presented in a form of 95% confidence
interval.

These two goals are deeply connected. In fact knowing
confidence interval gives an alternative hypothesis testing
method by checking whether 0 is in the 95% confidence in-
terval. In this connection, point estimation goes beyond
the simple Boolean claim on whether there is a treatment
effect by also providing a possible range for the treatment
effect and is therefore more preferable. However, in some
cases pure hypothesis testing is much easier to conduct than
providing confidence intervals. When testing a feature with
low coverage, hypothesis testing of the treatment effect can

! Although the name A/B testing might suggests there is
only one treatment and one control, it can be extend to
multiple treatments and that is very common in practice.
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Figure 1: Illustration of Online A/B testing as in
(2). Experimentation unit here is user but can be
changed to other units such as page-views or visits.

be more efficiently conducted using trigger analysis focus-
ing only on “subset of the data that could be impacted by
the treatment”’(we will give definition to what this means
in Section . This is intuitively obvious because by focus-
ing on the triggered subset, the treatment effect is more
concentrated and hence stronger. Put it in the other direc-
tion, keeping a subset of the data that couldn’t be impacted
by the treatment is like adding extra noise and will dilute
the treatment effect. Analyzing on triggered population is
called trigger analysis, in contrast with all up analysis on
the original all up or overall population. Hypothesis test-
ing in trigger analysis is also a testing procedure for all up
analysis. This is because if there is a treatment effect for
triggered subset, there must be a treatment effect for the
overall population. Trigger analysis also can provide point
estimation for the treatment effect on the triggered popu-
lation. To provide a point estimation for the overall treat-
ment effect on the all up population, we need to translate
our estimate of triggered effect back to the overall effect.
This translation is also called dilution because the overall
treatment effect is the triggered treatment effect diluted by
untriggered complement. Because of this, we also call this
overall treatment effect estimation after translation diluted
treatment effect. The translation step seems straightforward
to many people at first glance, and indeed it is for some met-
rics. But as we will show in Section [2]and Section 3] it turns
out to be difficult for a large set of common metrics such as
session success rate per user(SSR). Session success rate per
user is defined as the average over all users’ observed session
success rate. Note that at each experiment unit level (user
in this case), session success rate is a ratio of the number
of successful sessions to the number of sessions, hence the
name ratio metrics. These kind of metrics are widely used
in search engine evaluation. They are also called double av-
eraging metrics because each user’s session success rate is
by itself an average. It is different from session success rate
(per session) which is defined as the ratio of total successful
sessions to the total number of sessions. The double aver-
aged ratio metrics has the advantage of being more robust
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against outliers as users are treated equally instead of allow-
ing a few super heavy users dominate the metrics with high
weightings. Ratio metrics are very common in online A/B
testing especially when giving each experiment unit equal
weight is preferred. The goal of this paper is to show how to
do point estimation for overall treatment effect for all met-
rics including ratio metrics. We will get it right and get it
in an elegant way.

Traditionally majority of interest has been focused on the
hypothesis testing side. This is because for many applica-
tions of A/B testing, people just need to tell whether or not
there is a treatment effect and more importantly, if there
is any, whether treatment is better or worse. We call this
type of A/B testing action centric A/B testing. In recent
years, experienced by both authors working in Microsoft,
there is a growing demand in what we called value centric
A/B testing, in which we are also interested in estimating
the overall treatment effect of a feature. There are several
reasons behind this trend. First is for ROI(return of in-
vestment) calibration. Knowing the value of a feature and
cost of a feature allows us to know the ROI. If we need to
make choices between two or more features with different
cost, ROI could help us make final decision. Also in a lot of
cases not all treatments with positive effect are worth ship-
ping. New features almost always come with maintenance
cost and we should only ship features that are practically
significant, not just statistically significant. Second reason
is for team commitment and performance evaluation. In
a data driven culture, part of team performance should be
evaluated using objective measurement such as total con-
tribution of features shipped measured by some metrics. A
team would often commit to improve certain metric, their
OEC(overall evaluation criteria) by x%. This is a crucial
step and in some sense a manifesto of a truly data driven
culture. For this to be possible, point estimation of overall
treatment effect needs to be reported and recorded for each
feature shipped. Triggered treatment effect is of little use
here because it is often much easier to achieve a large move-
ment (3)), and we need to measure impact on the overall
population for fair comparison across different teams.

The paper is organized as follows. Section [2] introduces
two common types of trigger analyses used in search engine
evaluation. We also show why translation from triggered
effect to diluted effect is only straightforward for additive
metrics like sessions per user and queries per user, and could
be involved for ratio metrics such as Session Success Rate
per user. We derive exact dilution formula in Section [3| with
mild assumptions. The heart of this paper is Section[d where
we introduce a unified approach for all treatment effect dilu-
tion problems from a different angle by realizing the whole
purpose of trigger analysis with effect dilution is nothing
but trying to provide an unbiased estimator for the overall
treatment effect with smaller variance. Therefore, instead of
tackling the effect dilution problem, we directly tackle the
problem of estimating overall treatment effect with extra in-
formation of feature triggering. This new approach always
provides unbiased point estimation and confidence interval
for the overall treatment effect. Moreover, it also quantifies
the benefit of using triggering information from a variance
reduction perspective. Section [B] provides empirical results
from applying this approach on real experimentation data,
followed by conclusion in Section [§] In addition, we put a
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Figure 2: Different types of triggering analysis. User-trigger analysis will analyze from session 2 to session
4. Session-trigger analysis will remove session 1 and session 3. The yellow circled session 3 is a session that
is included in user-trigger analysis but not in session-trigger analysis

toy example in Appendix to illustrate the steps of different
methods.
Our contribution in this paper includes:

1. We show common mistakes of applying dilution for-
mula to ratio metrics.

2. We derive the exact dilution formula for both additive
metrics and ratio metrics. The derivation uses a novel
method that we believe is worthy of sharing.

3. The unified overall treatment effect estimation appro-
ach is a fresh look of the dilution problem. It applies to
all metrics. Comparing to dilution formula, it is easier
to implement, requires less assumptions and also less
error prone.

2. TRIGGER ANALYSIS

Many online services, especially a complex technology such
as search, has many features that only affects a small propor-
tion of traffic. Feature coverage is the proportion of traffics
that trigger the feature. For example, a better search result
for weather prediction only triggers when user search some-
thing related to weather. Some low coverage features trigger
for less than 0.1% traffics.

For a low coverage feature, straightforwardly perform hy-
pothesis testing on all up data can suffer from low statistical
power. Unless the treatment effect on those triggered traffic
is very large, overall effect after diluted by those traffic with-
out feature triggering could be extremely small. In search
engine feature experiment in Bing, overall effect for low cov-
erage feature is typically smaller than 0.1%. Also see Rule
#2 in (3). Even if all up analysis does show statistically
significant result, the accuracy of this estimation could be
much lower than the triggered treatment effect. For a fea-
ture with coverage less than 20%, we require team to also
provide trigger analysis.

Definition of triggering at each impression level (e.g.page-
view or query-view) is conceptually easy. We know ex-
actly whether a feature triggered or not in treatment, and
with proper counterfactual logging, we should be able to tell
whether a feature would be triggered if it were in treatment
for control group. However, many metrics are only defined
at experiment unit level, typically user in online A/B test-
ing. To define many metrics properly, we cannot simply
filter out triggered impressions for trigger analysis. To see
that, a session is defined as a set of consecutive impressions
from a user and we define a successful session if we believe
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user completed his or her “task” successfully in the sessiorﬂ.
And if we filter down to triggered impressions, we might
only get a subset of impressions for each sessions of a user.
Without the holistic view of the whole session we cannot
properly define session success. Another example is that
sometimes a feature is triggered to help user complete their
task easier in follow on impressions within the same ses-
sion. For instance, speller correction suggestion is triggered
when we detect a potential misspelling. A user can click
the suggestion and get better results if that is what they re-
ally want to query and achieve task completion on that next
corrected query(see Figure . Although we draw heuristics
from search evaluation, we believe similar arguments apply
to other domain of online A/B testingEI

WEB

IMAGES VIDEOS MAPS NEWS MORE

sttle

169,000,000 RESULTS Anytime -

Including results for seattle.
Do you want results only for sttle?

Figure 3: Speller correction for query “sttle”.

Due to the reason aforementioned, in search engine evalu-
ation and many other web services, we need to keep session
intact when doing trigger analysis. This leads to the concept
of session-trigger analysis, in which we take the subset of ses-
sions with at least one triggering event. In particular, users
who never trigger the feature will be excluded from the anal-
ysis. See Figure[2]for an illustration. However, some feature
might have long lasting effects that will not only affect the
current session but also affect subsequent sessions. In this
case, similar to the logic that we want to maintain the whole
session structure when doing trigger analysis, we might also
want to keep all sessions after the first triggering event of
a user. We can remove sessions before the first triggering
event for obvious reason that a feature cannot impact any-
thing before the first exposure. This leads us to the second
type of trigger analysis. We call it user-trigger analysis. In
Figure[2] we illustrate the difference between all up analysis,
session-trigger and user-trigger analysis. The first trigger
event is in session 2, so session 1 will be excluded from the
analysis. Session 3 is included in user-trigger analysis but
not in the session-trigger analysis.

2Detailed definition of session and success is out of the scope
of this paper.
3In other web services, a session normally represent a visit.



SS Number of Sessions

SatSS Number of Satisfied/Success Sessions

Tr Subscript or prefix for triggered

UnTr Subscript or prefix for untriggered

Overall | Subscript for all up analysis and effect

N Number of experiment units, typically users
Denom | Denominator

Table 1: Common notations used in formula deriva-
tion and variance reduction models.

In practice, user-trigger analysis is more widely used be-
cause it applies to general scenarios without assuming the
treatment effect only last within the same session the treat-
ment triggered. Using user trigger analysis also make other
user based metrics such as sessions per user and queries per
user available. If users are very satisfied with a new feature,
he or she would return more often to perform more tasks.
Those treatment effect impacted sessions might or might
not trigger the feature again. In session-trigger analysis, the
metric sessions per user merely counts sessions that trigger
the feature and therefore loses its meaning of measuring gen-
eral user engagement. The advantage of using session-trigger
is more sensitive by further zooming into the feature im-
pacted subset. Session-trigger analysis supports all session
based metrics such as session success rate per user, session
time to success per user, as well as all page based metrics
such as click through rate, conversion rate, and other ra-
tio metrics. In Section [5] we show for low coverage features,
session-trigger analysis can outperform user-trigger analysis.
Of course it is important to keep in mind that for session-
trigger analysis we assume the treatment has no impact on
sessions without triggering. This is also an assumption that
we can verify by doing trigger-complement analysis, in which
we analyze the complement data of session-trigger analysis
and test whether there is indeed no evidence of any impact.

2.1 Effect Dilution

In the context of trigger analysis, assume we have an es-
timate of the treatment effect in terms of a delta Ar,(X),
calculated as the difference of a metric X between treatment
group and control group. Here the subscript “ITr” stands for
“trigger” and we will use “Ir” and “UnTr” as shorthand for
“trigger” and “untrigger”. We will use these shorthand that
should make sense with contexts. See Table[I]for a complete
reference. If Ar, is an unbiased estimator for the treatment
effect on triggered population(triggered user or triggered ses-
sions), how can we translate it into an unbiased estimator
for the treatment effect on the overall population?

A formula that is frequently used for user-trigger analysis
is:
dicy M

where N7, and N are user counts in the trigger analysis and
all up analysis respectively and for session-trigger Nr,/N is
an estimate of the user-trigger rate or feature user cover-
age. A similar formula for ratio metrics in a session-trigger
analysis takes a similar form:

onerall = AT’I‘ X

Ao'ue'rcl,ll - AT?" X

N

N~ « TrDenominator ( 2)
Denominator
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where “Denominator” is the denominator of the ratio metrics
such as sessions or pages. For session success rate per user,
the additional multiplier (Tg:gs ) is the average session trig-
ger rate for triggered users. For click through rate per user,
that would be the average page trigger rate for triggered
users where the triggering is defined at the whole session
level, i.e. all page views in a triggered session counted as
triggered.

There are simple heuristics behind formula . For user-
trigger analysis, if the treatment effect estimated on the trig-
gered population is A, and this population is just Nr./N
of the total population, and if the treatment effect on un-
triggered population is 0, then the overall treatment effect
has to be the triggered treatment effect Ap, diluted by the
trigger rate. For ratio metric in a session-trigger analysis,
the same user dilution first need to be applied. Then within
triggered users, we still need to dilute by the fact not all
sessions are triggered. An intuitive choice seems to be using
the average trigger rate of the ratio metric’s denominator.

A closer look at this argument above begs more explana-
tion, especially for the session-trigger formula . In fact
these two formulas are both problematic in general for ratio
metrics like session success rate per user, as exemplified by
the following using session time to success per user (TTS).
Time to success is measuring how fast users get to a satisfied
result

1. User 1: 1 session-triggered session saving 100(msec), 1

non-session-triggered session, so no savings. User level
average TTS saving is -50(msec).

2. User 2: 1 session-triggered session saving 20(msec),

9 non-sesssion-triggered sessions, so no savings. User
level average T'T'S saving is therefore -2(msec)

Taking average of the two users, Aoveranr = —26(msec).
However, using formula , we first compute Ar, = —(100+
20)/2 = —60(msec), and then diluted it into —60x 1 x (1/2+
1/10)/2 = —18(msec). We get very different estimates. In
fact, we observed some cases that when we applied diluted
formula and compare the result Aoyeran to the 95% con-
fidence interval we got straight from all up analysis, the
formula estimate did not even fall into the intervall

This example exposed the intuition why the formula could
fail. When we reason about diluted the average triggered

effect by (Tg2emominator) “we are jmplicitly making a lot of
assumptions. Roughly speaking because the treatment ef-
fect is itself an average, the dilution by the triggered rate of
the denominator should be applied to each individual user
level treatment effect first before the average is taken. This
could be different from the formula, if there is some corre-
lation between the treatment effect and the trigger rate of
the denominator; See Section @

In the next section, we will derive a rigorous universal for-
mula by using potential outcome framework(5]). This frame-
work will enable us to see through the problem in a crystal
clear lens. We will suggest how to implement the formula.
In Section [] we argue that variance reduction framework
provides a much general implementation that will supersede
the formula. Nevertheless the discussion in the next section
paves the way for a deeper understanding.

4The original example was contributed by our colleague
Aron Inger and Ron Kohavi and we made some minor mod-
ification.



3. EXACT DILUTION FORMULA

3.1 Rubin’s potential outcome framework

Rubin potential outcome framework, also known as Rubin
causal model(RCM) (&) is an approach to analyze causal ef-
fect based on a conceptual potential outcome pair. For each
subject, say user, if there is a causal effect caused by certain
treatment, we model this by a pair (X7, X¢). Xr and X¢
is the measurement if the subject is given treatment or not,
respectively. And the difference X1 — X¢ is the causal ef-
fect of the treatment. Note that both X7 and X¢ could be
nondeterministic and X7 — X¢ could be random. The goal
of the causal inference is therefore to estimate the average
treatment effect(ATE) over a population. ATE is

n=E(Xr — X¢).

In reality, there is no way we can observe the pair. If a
subject is exposed to treatment, we observe X1 and not X¢,
and vice versa. The missing part is called counterfactual.

In online A/B testing, we can estimate EXr and EX¢
seperately using sample average in each group. This is be-
cause both groups are sampled from the same population.
Using E(Xr—X¢) = EXr—EX¢, we see that A = Xr—Xco
is an unbiased estimator for the ATE.

The procedure above is an example of the following rule
of thumb:

To estimate causal effect, we can always trans-
form an unbiased estimator based on potential
outcome pairs into an unbiased estimator using
observations from treatment group and control
group in a randomized experiment.

The advantage of deriving a formula under the potential
outcome framework is that we reduce the problem of having
two groups of subjects into only one group. This simplifica-
tion makes the derivation a lot easier and lucid.

3.2 Additive Metrics

Metrics like Queries per user or sessions per user sat-
isfy the following additivity property. For any user, if X
is the metric in all up analysis, TrX is that in triggered
analysis and UnTrX for trigger-complement analysis, then
X =TrX +UnTrX. Metrics like session success rate per
user or click through rate per user does not have this prop-
erty since the numerator and denominator are both additive
but the ratio is not.

This property is very crucial for a simple formula like
to work. To see that, under the potential outcome
framework, each user has a potential pair (X7, Xic),i =
1,...,N and the estimated treatment effect is defined as
onerall(X) = Z(XzT - XzC’)/N

N x onerull(X) = Z(XzT - XiC)
= Z(XiT - Xic) + Z(XiT — Xic)

UTr
= Z(XiT — Xio)+
UTr
> (TrXor — TrXio) + Y _(UnTrXr — UnTrX,c)
Tr Tr
=> (TrXir — TrXic),
Tr
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where Tr and UnT'r in the subscript of the sum indicate

triggered users and untriggered users. The third equation

uses the additivity and the last equation uses the fact that

there is no treatment effect for untriggered users and even

for triggered users, there is no effect on trigger complement.
Divide both side by N and we get the formula

TrXir —TrX; r

onerall(X) = ZTT( r N’; r C) X N]\T;
Nt
= Ap.(X) x AT[ .

We make the remark that this formula is correct for both
user-trigger analysis and session-trigger analysis, provided
that the metric satisfies the additivity property.

3.3 Ratio Metrics

A Ratio metric has a form X; = Num;/Denom; where
we use “num” and “denom” as shorthands for numerator
and denominator. Both Num and Denom are additive, i.e.,
Num = TrNum + UnTrNum and Denom = TrDenom +
UnTrDenom. The complete potential outcome pair is

(Num;r, Denom;r, Num;c, Denom;c).

In the following discussion, we will assume Denom;r =
Denom;c = Denom,, i.e., there is no treatment effect on the
denominator. This is an assumption that we need to provide
a clean formula. We will discuss its rationale why it is a rea-
sonable assumption. In fact in the next section, we will see
in a unified framework we don’t even need this assumption.
Another key assumption is that there is no treatment effect
on untriggered components, i.e. UnTrX;7 —UnTrX;,c = 0.
Now we derive the formula for general ratio metrics. Read-
ers are welcome to think about session success rate or click
through rate. For session success rate, Num is successful ses-
sion count and Denom is session count. For click through
rate, Num is click count and Denom is page-view count.
The following derivation also works for both user-trigger
analysis and session-trigger analysis.

N x onerall(X) = Z(XZT - XZC)
= Z(XiT - Xic) + Z(XiT — Xic)
UTr Tr

= Z(XZT — Xic) no effect on untriggered users
Tr
Tr
Tr

The last equation is from Num;r — Num;,c = TrNum;r —
TrNum;c = TrDenom; x (TrX;r — TrX;c).

TrDenom;/Denom; is the trigger rate (TR) of the de-
nominator. For session success rate, this is the session trig-
ger rate for a triggered user. Divide both side by N we get
the formula

Numir — Num;c .
common denominator

Denom;

TrDenom;

TrX;r — TrX;c).
Denom; X( raar rXic)

1
onerau(X) = N E TR; x (TTXZ'T — TT'Xic) (3)
Tr

If this trigger rate TR and the user level treatment effect
TrX,r—TrX,c are independent, the r.h.s. can be simplified



o]
1/N X Ny x TR x TrX;7 — TrX;c
=1/N x Ny, x TR x A1 (X).
Therefore

N Tr

x TR.

AO'L;erall (X) = ATT(X) X

This is formula .

From this derivation, it is clear that formula relies on
the independence assumption which is normally not guar-
anteed. The counterexample we gave in the last section is
a case where user 1 has both larger treatment effect and
higher trigger rate, demonstrating a positive correlation be-
tween the two. In practice, there are many cases where a
treatment will impact heavy user and light user differently
and at the same time heavy user could also have higher or
lower different trigger rate for a low coverage feature. The
dependency between trigger rate and the treatment effect is
very common. Therefore formula is only an approxima-
tion that could be off when the aforementioned correlation
is high.

3.4 Discussion: Implementation and Assump-
tion Checking
Formula cannot be simplified further into a direct
translation from A1, to Aoyerqir. For most cases, the trig-
ger rate TR only has finite possibilities. If we first group all
users by trigger rate,

1
AOverall(X) = N ZT X Z (TTXZ'T - TTXiC)

TR=r
= NK;T X NlT'r X ;T X Nrp=r X A(TrX|TR=71) =
N [ 1
~ <NTT x Z:r X Nrp=r X A(TrX|TR = r)> :

The first term is still the user trigger rate. The rest in
the parenthesis can be calculated by first grouping users by
trigger rate TR, and then calculating the delta of the metric
in each sub group, multiplied by trigger rate r. Those group
level values are then averaged using the weight Nrr—, /N
Note that N7, = ) Nrpr=r so these weights sum up to 1
and this last step is a weighted average.

In practice it is usually hard to match for all values of TR,
we can resort to some discretization to reduce the number
of sub groups. This also means we are sacrificing accuracy.

We do not recommend the approach above for all these
practical concerns. The following is an alternative that is
much easier to implement. Re-arrange r.h.s. of Formula
as

1 1
N > (TRi x TrXir) — ~ 2 (TR x TrXic).  (4)
Tr Tr

We see that to estimate the overall treatment effect of a
metric X, instead of estimating its value in both treatment
and control by taking sample average, we can conceive of a

SRigorously, this is not exact equality. But they are both
unbiased estimators for the same quantity under the inde-
pendence assumption.
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deri\Led metric Y; = TR; x TrX,; and calculate sample aver-
age Y in treatment and control. Note that for untriggered
users, T'R; = 0 and hence Y; = 0.

AOve'r‘all =Yir — Yic.

This suggests that we only need to compute the A for this
new dummy metrics to get an unbiased estimator for the
overall treatment effect. This is considerably easier to im-
plement than the trigger rate grouping method. In the next
section we will further extend and improve this.

The assumption that there should be no difference for the
trigger complement set is a more fundamental assumption
that justifies using session-trigger analysis. If there is effect
carried on from triggered session to untriggered session, then
user-trigger analysis would be preferred. One way to check
this assumption is to test this assumption by doing trigger-
complement analysis, similar to how we test treatment effect
in the trigger analysis. If there is no statistically significant
movement, based on Occam’s Razor principle, we’ll happily
accept this assumption.

Another assumption is that there is no effect on the de-
nominator. This is also something we can test with statis-
tical test. When this test fails, the idea of using this ratio
metric is at stake. What does it mean if click through rate
decreased but number of page-view increased? A feature can
clearly make user happier to try our service more for harder
tasks with lower success rate or conversion rate. For this
reason, when we look at a ratio metric, it is fair to assume
the denominator does not move. Otherwise we should avoid
using this metric.

4. A UNIFIED FRAMEWORK: DILUTION
AS VARIANCE REDUCTION

Formulas like for additive metrics and for ratio
metrics leave a lot to be desired. First it feels redundant
that we need different formulas for different type of met-
rics. What if we have another type of metrics that are not
covered by either additive metrics or ratio metrics? The
novel derivation method we displayed using potential out-
come framework can be used on new types of metrics. But
it won’t guarantee the result can be simple enough to have
an clean implementation. As we have already seen, imple-
mentating Formula involves nontrivial investigation and
we were lucky to have one.

Fortunately, there is a unified framework that solves this
whole dilution problem in a more elegant way. The idea was
laid out in Improving the sensitivity of online controlled ex-
periments by utilizing pre-experiment data (1)). The dilution
problem has seemingly no relationship with pre-experiment
data and yet the method is general enough to cast the dilu-
tion problem as a special case.

4.1 Dilution and Variance Reduction

The ultimate purpose of dilution is to more accurately es-
timate the overall treatment effect. If we also want to main-
tain unbiasedness of the estimator, by variance-bias trade-
off, reducing variance is the only way. The whole purpose
of using trigger analysis and then applying correct dilution
formula to translate the estimated effect back to overall pop-
ulation should be evaluated by two criteria. 1) Is the new
estimator unbiased? 2) Is the variance of the estimator re-
duced?



This line of thoughts lead us to a new approach. Why do
we need to separate the job into two steps and try to derive
the correct dilution formula? Can we tackle this problem as
a whole and focus on reducing variance?

In Deng et al. (IJ), the authors provided a practical, almost
assumption-less and intuitive approach to reduce variance of
treatment effect estimator. The key step is to find other met-
rics that are not supposed to be affected by the treatment
effect. These metrics are called covariates and are used to
adjust the estimator similar to linear regression without all
the burdens of linearity and normal assumptions of linear
regression. Also see Yang and Tsiatis (7)) and Tsiatis (6] for
alternative approaches and general theory of semiparametric
methods.

4.2 Variance Reduction Framework

Suppose X is the metric of interest and we wish to esti-
mate the treatment effect

= FEXr — EXc.

The naive estimator is A(X) = X1 —Xc. If we have another
metric Y which is not affected by the treatment effect. Then

EYr — EYc =0,
and therefore
A" = (X7 —Xco)—0x (Yr—Yo)=A(X)—0AY) (5)

remains to be an unbiased estimator for the same treatment
effect p for arbitrary choice of 6. Recall our goal is to reduce
variance of the estimator. Minimizing the variance of A* we
get the optimal 6

o — Cov(A(X),A(Y)) _ Cov(X7,Yr) + Cov(Xc, Yo)
Var(A(Y)) Var(Yr) + Var(Yc)

where the second equality is due to the fact treatment and
control are two independent groups of subjects. In practice
since we don’t need to use the exact optimal 6, we can simply
use control group alone

_ COV(Tc,Tc) _ Cov(Xc,Yeo)
Var (?C) Var (Yc )

or similarly use treatment data, or form the average of both.
When treatment effect is not huge, these difference choices
do not make big difference. Under null hypothesis when
there is no treatment effect, all those choices all converge
to the same value. Also, as pointed out in Deng et al. (1),
although it seems that we need to estimate 6™ from the data
and hence a concern about accuracy of this estimation, it is
really not an issue at all. This is because A* is unbiased for
any chosen 6 and even if we don’t accurately estimate the
optimal 6%, we still get most of the variance reduction from
using a close enough estimate.

We can also see the optimal variance reduced from this
approach.

Var(A*) = (1 — p?)Var(A),

where p = Corr(X¢,Ye) = Corr(Xr,Yr). That is, the
higher the correlation between X and Y the larger the vari-
ance reduce

In practice we don’t use this formula to estimate the vari-
ance of A*. Instead we directly work out the variance of
with estimated covariances and 6* plugged in.
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This method can apply to multiple covariates. When Y is
multi-variate, 8 is also a vector and the variance reduction
is 1—R? where R? is the variance explained by the covariates,
similar to R? in multiple linear regression.

Deng et al. (1)) showed that for online A/B testing, co-
variates Y are abundant. The authors recommended using
the same metric of interest calculated using pre-experiment
data. In their empirical study, these pre-experiment covari-
ates can reduce variance for metrics like queries per user by
40% to 50%. The method was also called CUPED from ini-
tials in Controlled experiments by Utilizing Pre-Experiment
Data.

4.3 Unified Dilution

In Section [B] we’ve derived different formulas for additive
metrics and ratio metrics. From variance reduction perspec-
tive, we can unify all these into one step without differen-
tiating additive and ratio metrics, and potentially support
all different types of metrics. The implementation is also
significantly cleaner and easier.

To apply variance reduction, we only need to propose co-
variates that are highly correlated to the metric of interest
and not affected by treatment. The intuition behind the
trigger analysis is that trigger complement data is not af-
fected by the treatment effect and therefore only add noises.
This makes it a perfect covariate! Note that we make no
assumption on the form of metric X, be it additive or ratio
or other functional forms.

Some other covariates available include trigger rate and
other pre-experiment metric values. Pre-experiment met-
rics are the topics of Deng et al. (I)) and we treat them as
orthogonal to our focus in this paper. We propose the fol-
lowing variance reduction formula:

X ~UnTrX +TR+ (IsTR=1), (6)
where the r.h.s. lists covariates and the '+’ means additional
covariates. UnTrX represents the same metric calculated
from trigger complement data. For user with 100% trigger
rate, there is no trigger-complement data so UnTrX is not
well defined. To deal with that, we add one additional bi-
nary covariate (IsTR = 1) that indicates whether there is
no trigger complement data. When this is true, we define
UnTrX to be 0 or arbitrarily. See more discussion of this
implementation detail in Deng et al. (I, Section 4.2).

In the last section we also showed for ratio metrics, sample
average of a dummy metric Y = TR x TrX can be used to
estimate overall treatment effect for a metric X. We can
extend this by further applying variance reduction on top of
it:

Y:=(TRxTrX)~UnTrX +TR+ (IsTR=1) (7)
This is similar to Model @ except the Lh.s. is replaced by
dummy metric Y. The theory of variance reduction guran-
tees that this can produce another unbiased estimator for
EYr — EYc, which is the same as EX1t — EX¢ based on
Formula .

4.4 Connection to Dilution Formula

There is a deep connection between dilution with variance
reduction framework and simple dilution formula. To see
that, we use additive metrics as an example for simplicity
and apply the VR formula X ~ UnTrX.



To apply variance reduction on additive metrics, since
X =TrX +UnTrX, we get
0 — Cov(X,UnTrX)

Var(UnTrX)

_ Cov(TrX,UnTrX) + Cov(UnTrX,UnTrX)
B Var(UnTrX)
Cov(TrX,UnTrX)

Var(UnTrX)

=14+
If we ignore the second term and 6* = 1, then the variance
reduction formula reduces to

A" = A(X) = AWUnTrX) = N

X ATT(X)

since X =TrX + UnTrX and X = UnTrX for untriggered
users and Ar.(X) = Apr(TrX).

The ignored second part of 6" is trying to achieve addi-
tional variance reduction by exploiting the correlation be-
tween TrX and UnTrX. In other words, the dilution for-
mula is a special case with suboptimal choice of * under
the variance reduction framework, and can be superseded by
variance reduction.

S. RESULTS AND DISCUSSION

We evaluate the performance of the unified dilution frame-
work in two phases. High quality labeled A/B experiments
were selected. Different models were applied to each met-
ric and their variance reduction rates were compared. We
further compared the two main trigger analysis methods:
user-trigger analysis and session-trigger analysis.

5.1 Data and Metrics

Three A/B experiments that have different trigger rates
are selected. The experiments were labeled positive or neg-
ative with high confidence. In each experiment, millions of
users and queries are included with the rich click informa-
tion. The scale of the data set is 1000 times more than what
usually is affordable for human judgment data.

The evaluation is done for three methods: the formula
approach that computes the delta for TR x TrSSR (im-
plementation of Formula in the form of and we call
it the Exact Formula), using TR; x TrSSR; as response
(model (7)) and using SSR as response directly (model (6)))
for the variance reduction framework. For all three meth-
ods, we can also compare user-trigger and session-trigger
approaches. Among the three, only model (@ is generic and
can be easily modified and applied to other types of metrics.
Using TR; x TrSSR; either directly or as the response in
model @ are extensions of Formula and can only be
applied to ratio metrics.

For performance measures, we mainly focus on the vari-
ance reduction rate. The advantage of variance reduction
rate is that it can be directly translated to the accuracy of
the point estimation for the overall treatment effect, because
higher variance reduction corresponds to better accuracy or
narrower confidence interval of the estimate. Quite often,
improvement of variance reduction also leads to a differ-
ence between whether the statistical test is significant or
not. Variance reduction also translates to traffic or sample
size saving. A z% variance reduction is equivalent to be-
ing able to reach to the same statistical power with % less
traffic/sample size.
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Experiments - Trigger Ra.te -
%Triggered Users | %Triggered Sessions
ExpA 5.26% 1.27%
ExpB 33.46% 20.83%
ExpC 65.17% 60.35%

Table 2: Trigger User and Trigger Session Ratios.

User Trigger
Experiments | Exact Formula | Mod. (7) [ Mod. (6)
VR rate VR rate | VR rate
ExpA 88.60% 98.42% 95.60%
ExpB 17.14% 84.80% | 78.57%
ExpC -49.47% 61.45% 36.03%

Table 3: User Trigger Three Models Variance Re-
duction comparison.

5.2 Variance Reduction Rate

We first characterize the trigger rate for 3 experiments
ExpA, ExpB, ExpC. ExpA considers changing in posi-
tions in the Related Search blocks, ExpB focuses on video
answer in task panes, while ExpC looks at creating dynamic
sizing for results. Tableshows the percent of users and ses-
sions funneled into user-trigger and session-trigger analysis
for 3 example experiments. ExpA, for instance, have only
5.26% users exposed to the treatment and only 1.27% overall
sessions have treatments in them.

We have carried out another set of 3 experiments with
triggering rates close to ExpA, ExpB, ExpC respectively.
The results for both sets are similar. For pair of flights with
very different treatments, when trigger rate is similar, the
resulting variance reduction rate is similar. we have done
analysis for dozens of experiments with other trigger rate
values. As expected, trigger rate is the key factor that af-
fects the variance reduction rate while the particular feature
changes do not matter much.

ExpA, ExpB, ExpC are also different types of flights in
themselves. ExpA considers changing in positions in the
Related Search blocks, ExpB focuses on video answer in
task panes, while ExpC looks at creating dynamic sizing
for results. The trigger rates for the 3 experiments are illus-
trated in the Trigger Rate Table. The number of total users
ranges from 28 million to 40 million for the 3 experiments.

Table [3| shows the results on the 3 experiments for user-
trigger models using Exact Formula (4]), variance reduction
method using model and model (6). VR method using
model yields the largest variance reduction rate in all
three experiments. It is surprising that using the exact for-
mula directly without VR can lead to increased variance for
high coverage features as shown in ExpB and ExpC. Turned
out this is due to additional variance contributed by the
multiplication factor TR. For high coverage feature where
TR can be large for some user but low for others, the vari-
ance in TR can generate extra variance. To get most out
of the exact formula, we need to group users by their trig-
ger rate TR to remove variance contributed by T'R. This
is done implicitly by adding TR as one of the covariates
in model , which eventually leads to the largest variance
reduction. However, even without any cue from the exact
formula , using the generic variance reduction model @
also performs quite well.



Session Trigger
Experiments | Exact Formula | Mod. (7) | Mod. (6]
VR rate VR rate | VR rate
ExpA 97.12% 99.44% 98.25%
ExpB 28.12% 89.85% 85.99%
ExpC -31.32% 69.10% 53.97%

Table 4: Session Trigger Three Models Variance Re-

duction Comparison.

Experiments | User Trigger | Session Trigger
Variance Variance
ExpA 4.40% 1.75%
ExpB 21.43% 14.01%
ExpC 63.97% 46.03%

Table 5: Variance Using Mod. @: User Trigger,
Session Trigger. Variance is measured as percentage
of the variance from all up analysis.

Table [4] compares the three models using session-trigger
covariates for the two VR methods. Similar to user-trigger
scenario, VR method using TR x TrSSR (model (7)) has
the highest variance reduction rate in all 3 experiments even
if directly using TR x TrSSR can increase variance as in
ExpC.

We now compare the variance reduction rate for user-
trigger and session-trigger methods. We use VR method
with SSR (model @) in the example because this is a generic
method not depending on any theoretically derived formula.
Table |5 shows the variance using Model @ measured as
percentage of corresponding original all up analyses’ vari-
ances. Session-trigger method consistently leads to smaller
varaince. Note that although the varaince reduction rate in
previous tables might not be quite different for low cover-
age experiment as in ExpA, the true variance difference is
huge. To see that, for ExpA, the variance after reduction
is 4.4% (user-trigger) compared to 1.75% (session-trigger).
Session-trigger with VR model @ produced a variance that
is only 40% of the variance from user-trigger with the same
VR model. This also clearly translates to the sensitivity
improvement that reflects in the p value.

For all 3 experiments, the change from using user-trigger
to session-trigger leads to the improvement for making cor-
rect data-driven decisions. In both ExpB and ExpC, user-
trigger analysis are boarder line significant, which makes it
hard to draw a clear decision by itself. Session-trigger analy-
sis, however, confirms the movement and lifts the confidence
of the decision, a clean data-driven decision can be drawn
directly.

5.3 Impact on Hypothesis Testing

If we are not concerned about the “value centric” estima-
tion for relative delta, but rather only focus on the “action
centric” hypothesis testing, then it is possible to do A/B ex-
periments only based on user-triggered sessions or session-
triggered sessions, i.e., the analysis methods shown in Fig-
ure [2| also known as trigger analysis. Table |§| compares the
t-statistics for using generic VR method model @ to us-
ing trigger analysis. They both gave statistically significant
results in the 3 experiments. VR methods won on ExpA
and the trigger analysis won for ExpB. Note that t-statistics
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VR Using SSR Trigger Analysis
Experiments | Session Triggered | Session Triggered
t stats t stats
ExpA 6.72 3.32
ExpB 3.97 5.26
ExpC 3.50 3.39

Table 6: Sensitivity comparison for VR model using

SSR and trigger analysis.

Session Trigger Complement

Experiments | ExpA | ExpB | ExpC

P value 0.23 0.38 0.55

Table 7: P value for A/B testing on the session trig-
ger complement.

are random numbers influenced by the estimated delta. In
connection to the discussion in Section [£4] we believe in
general VR metric would be slightly more powerful than
trigger analysis due to its extra variance reduction. But the
main advantage of using VR method is the direct estimation
of overall treatment effect, not just the treatment effect on
triggered population.

5.4 Assumption Checking and Final Remarks

Results in this section suggest that we can use the variance
reduction model directly for estimating overall treatment
effect without the two steps approach involving a trigger
analysis and a dilution step. For a general metric X, we
recommend model @ which can be easily implemented. For
ratio metrics, model is a strong alternative. However it
does rely on extra assumption such as no treatment effect on
the denominator of the ratio metrics which is used to prove
formula . This makes it less reliable and applicable.

Another assumption for doing session-trigger analysis is
that the treatment effects are contained completely in trig-
gered sessions. Omne way to verify this assumption is to
do hypothesis testing for the metric of interest on session-
trigger complement sets. Table m shows that all the result-
ing p values are not statistically significant for the three
experiments. Therefore, we don’t see evidence there are any
treatment effects in session-trigger complement sets in these
three example

6. CONCLUSIONS

In this work we looked at the dilution problem for estimat-
ing the overall treatment effect in online controlled experi-
ments. We showed the right way for doing this is not obvi-
ous for a large set of widely used metrics, the ratio metrics.
We first theoretically derived the dilution formula, based
on Rubin’s potential outcome framework. Furthermore, we
discovered the connection between the variance reduction
framework and the dilution problem and successfully refor-
mulated the problem as a special case of variance reduction.
We presented empirical results for the unified dilution appro-

"Note that we can never prove there is no effect in session-
trigger complement, unlike user-trigger compliment. And
any statistical test have false negatives. We call out Oc-
cam’s Razor in this case that we choose to believe a simpler
model(no effect in session-trigger compliment) given no ev-
idence against it.



ach and demonstrated that it yields significant improvement
in the accuracy for the overall treatment effect estimation.
We compared two different trigger analyses, session-trigger
analysis and user-trigger analysis in detail. We are not aware
of other literature on the same topic. We believe the work
here is a novel application of the variance reduction frame-
work in “value centric” online controlled experiments and
greatly improves the accuracy of treatment effect estimation
for low coverage features.
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APPENDIX
Ilustrative Toy Example

In this section we give detailed steps of 2 methods we com-
pared in Section (1) the formula approach that com-
putes the delta for TR x TrX (Formula (4)), (2) using X
as response directly (model @) Model [7] is very similar
to Model [6] so we leave it as an exercise to readers. As
in Section Bl we chose the metric X to be SSR. Note that
the framework in this paper assumes enough sample size for
central limit theorem to be applicable. Small sample toy
example like this is only for illustration.

Group User S1 S2 S3 S84 S5 |X TR TrX UnTrX TR=1
A 1 0 0 0 1 [2/5 1/5 0 1/2 0

T B 1 1 0 1 34 1 3/4 0 1

T cC 1 0 0 13 1/3 1 0 0

T D 0 0 0 0 0 0 0 0

C E 0 1 0 1 1 3/5 1/5 0 3/4 0

C F 1 1 1 1 1 1 0 1

C G 0 0 1 1/3 0 0 1/3 0

C H 0 1 0 0 1/4 1/4 1 0 0

We use the toy example listed in the table above through-
out this section. 8 users in this example are split into treat-
ment and control with up to 5 sessions observed. Each entry
in the table indicates success or not, and triggered sessions
are emphasized as bold and italic.

The first step is to calculate the metric value X, the trigger
rate T'R and the trigger-complement metric value UnTrX.
In our toy example of SSR, X is simply the average of each
data row, and trigger rate TR is the number of bold and
italic entry divided by the number of non-empty entries.
UnTrX is the SSR calculated using plain entries(not bold
and italic). Two special cases are user B and F, who have
all sessions triggered. Hence there is no trigger-complement
sessions and we define UnTrX as 0 and also mark TR =1
as 1.

Exact Formula [d Formula [ is straightforward to apply.
We just take delta of TR x TrX calculated in treatment

358

group and control group.

T:(1/5x041x3/44+1/3x1+0)/4=0.271
C:(1/5x0+1x140x1/3+1/4x1)/4=0.313
Overall Effect : 0.271 — 0.313 = —0.042

For test, we calculated variance of TR x TrX for the two
groups to be 0.127 and 0.224. And the variance of the delta
is estimated to be 0.127/4+0.224/4 = 0.088. Finally we get
our z-score of —0.042/4/0.088 = —0.142.

VR: Formula[6] To apply Formula[f]the gist is to estimate
9. Note that 8" = Var(Y)™! x Cov(X,Y) where Y is the
vector (UnTrX,TR,IsTR = 1) and Var and Cov here are
matrices. For the control group, 6 is

—1

0.127 —0.081 —0.090 —0.010 0.488
—0.081  0.192 0.213 x| 0.130 | =|0.317
—-0.090 .213 0.250 0.151 0.512

For illustration we’ll just take this 6*. In practice, one can
use a weighted average of 6" estimated from control and
treatment. Using this 6,

AVR = A(X) — 0.488 x A(U’ILTT’X)

—0.317 x A(TR) — 0.512 x A(IsTR =1)
—0.175 — 0.488 x (—0.145) — 0.317 x 0.021 — 0.512 x 0
= —0.111

To get z-score, we also need to calculate the variance.
which is

Var(Xr) + Var(X¢) + (0%)" (Cov(Yr) + Cov(Y¢)) 0*
—2x (0")" (Cov(X, Y1) + Cov(X,Y¢))
= 0.00435

The variance reduction rate hence is 1 — 0.00435/0.086 =
95.0%. Z-score is then —0.111/4/0.00434 = —1.685.
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