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ABSTRACT
Popularity prediction on microblogging platforms aims to
predict the future popularity of a message based on its
retweeting dynamics in the early stages. Existing works
mainly focus on exploring effective features for prediction,
while ignoring the underlying arrival process of retweets.
Also, the effect of user activity variation on the retweeting
dynamics in the early stages has been neglected. In this
paper, we propose an extended reinforced Poisson process
model with time mapping process to model the retweeting
dynamics and predict the future popularity. The proposed
model explicitly characterizes the process through which
a message gain its retweets, by capturing a power-law
temporal relaxation function corresponding to the aging
in the ability of the message to attract new retweets and
an exponential reinforcement mechanism characterizing the
“richer-get-richer” phenomenon. Further, we introduce the
notation of weibo time and integrate a time mapping process
into the proposed model to eliminate the effect of user
activity variation. Extensive experiments on two Weibo
datasets, with 10K and 18K messages respectively, well
demonstrate the effectiveness of our proposed model in
popularity prediction.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Online
Information Services—Web-based services

General Terms
Algorithm, Measurement

Keywords
Popularity Prediction; Reinforced Poisson Process; Retweet-
ing Dynamics; Microblogging Platforms

1. INTRODUCTION
In recent years, online social networks (OSNs) such as

Facebook, Twitter, YouTube etc., have become increasingly
popular for their important roles in information sharing and
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interpersonal communication. The prevalence of OSNs has
brought along an enormous and ever growing amount of user
generated content (e.g., blogs, videos, photos and messages
etc.). Recently, the study of predicting the popularity
of user generated content has drawn much attention for
its remarkable practical value in numerous applications,
including trend forecasting [7, 10, 17, 32], understanding
the collective human behavior [6, 19, 31], election prediction
[28, 30], movie revenue estimation [2] and media advertising
[1, 15] etc. Future popularity of user generated content
indicates the intensity with which people would react and
hence has the potential to influence the policy decisions.

On microblogging platforms, such as Twitter1 and Wei-
bo2, messages gain their popularity as being retweeted
[13]. Generally, the popularity prediction problem on micro-
blogging platforms is defined as follows: given a message,
predicting its future popularity based on its retweeting dy-
namics in the early stages, where the popularity of a message
is represented by the number of its retweets. To address this
problem, considerable efforts have been invested in the past
years. In general, current methods fall into the following
two main paradigms. One treats the prediction problem
as a regression or classification task, making predictions by
exploring relevant factors and applying standard regression
or classification methods [4, 8, 11, 18]. These methods have
been successful in revealing many explicable and effective
factors for prediction. However, there are still numerous
factors to be considered and these methods are always based
on some assumptions or simplification of major factors. The
other one treats the retweeting dynamics as time series,
making predictions by fitting these time series into certain
class of functions [9, 19, 31]. The drawback of these methods
is that they model the retweeting dynamics in a mean-
field way by focusing on the average amount of retweets
received in a fixed time window, ignoring the underlying
arrival process of retweets.

Recently, Shen et al. [23] proposed a generative prob-
abilistic model using a reinforced Poisson process (RPP)
to model explicitly the process through which individual
items gain their popularity. The model captures three
key ingredients of popularity dynamics: (i) fitness of an
item, characterizing its inherent competitiveness against
other items; (ii) a general temporal relaxation function
corresponding to the aging in the ability to attract new
attention; (iii) a reinforcement mechanism characterizing
the well-known “richer-get-richer” phenomenon. Despite

1http://twitter.com
2http://weibo.com
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its remarkable success in modeling the citation dynamics
as reported in [23], there remains some limitations when
applied to model the retweeting dynamics. Firstly, unlike
the temporal relaxation function which can be adjusted with
respect to specific domain, the reinforcement mechanism in
RPP model is fixed to be a linear function of received pop-
ularity. However, in this paper, we show that this may not
hold true for retweeting dynamics. Moreover, the original
RPP model does not consider the effect of user activity
variation on the popularity dynamics. Generally, users
are more active during the daytime than in the midnight.
Hence, considering the number of retweets that a message
receives in the first hour after been posted, a message posted
during daytime will on average receive more retweets than
messages posted during midnight. Neglecting the effect of
user activity variation may cause the misinterpretation of
the relative interestingness of a given message.

In this paper, we extended the general reinforced Poisson
process model and addressed the above deficiencies by
introducing a power-law temporal relaxation function, an
exponential reinforcement function and a time mapping
process. Specifically, through analyzing the real data, we
found that the temporal relaxation in retweeting dynamics
follows a power-law distribution instead of a log-normal
distribution as in [23]. Further, observing that the rein-
forcement effect becomes weaker when the popularity of
message grows larger, we proposed a reinforcement function
with an exponential decay to capture this phenomenon.
Moreover, to eliminate the effect of user variation on the
retweeting dynamics, we introduced the notation of weibo
time and applied a time mapping process to transform the
time moments in the retweeting dynamics into weibo time.
Putting all these together, we named the proposed model
PETM (a reinforced Poisson process model with Power-law
relaxation, Exponential reinforcement and Time Mapping
process). Finally, we provided a detailed description for the
modeling, learning and prediction process of the proposed
model.

To evaluate the performance of our proposed model,
focusing on the popularity prediction task, we conduct-
ed extensive experiments on two Weibo datasets, with
10K and 18K messages respectively. The experimental
results show that our proposed model outperforms two
baseline models, i.e., SH model [25] and ML model [21],
and achieves a remarkable improvement over the original
RPP model with a log-normal relaxation function and a
linear reinforcement function. Moreover, we show that
the prediction performance of a series of RPP models can
be significantly improved by integrating the time mapping
process. Additionally, we also investigate the inherent
characteristics of the parameters of our proposed model.

The novelties and main contributions of this paper are
summarized as follows:

• By analyzing real datasets, we reveal that the tem-
poral relaxation which characterizes the aging of a
message in retweeting dynamics follows a power-law
distribution, and the reinforcement effect declines as
the popularity grows which can be captured by a
reinforcement function with an exponential decay.

• We introduce the notation of weibo time and propose
a time mapping process to eliminate the effect of user
activity variation on the retweeting dynamics.

• We present an extended reinforced Poisson process
model, namely PETM, by integrating a power-law
temporal relaxation function, an exponential rein-
forcement function and a time mapping process with
the original RPP model. Extensive experiments on
two Weibo datasets validate the effectiveness of the
proposed model in popularity prediction task.

The rest of this paper is organized as follows. We present
a review of related work in Section 2. The preliminaries
including the formal definition of popularity prediction
problem and the description of general reinforced Poisson
process model are provided in Section 3. We give a detailed
description for the modeling, learning and prediction process
of the proposed model in Section 4. In Section 5, we describe
the datasets, comparison methods and evaluation metrics
used in our experiments. The experimental results and
discussion are presented in Section 6. We conclude our paper
in Section 7.

2. RELATED WORK
Popularity prediction of user generated content has been

widely studied in the literature. Recent studies on micro-
blogging platforms include popularity prediction for hashtag
(or trend) and individual message. Typical solutions include
the regression models [4, 12, 27], classification models [8,
10, 11, 18, 16] and time series models [19, 31, 32]. For
regression or classification models, previous works mainly
focus on exploring effective features for prediction. As
an initial effort, Bongwon et al. [24] examined a number
of features that might affect retweetability of tweets and
found that content features such as URLs and hashtags have
strong relationship with retweetability. Tsur et al. [27]
employed a regression model to predict hashtag frequency
on a weekly basis based on 25-week Twitter data. The
features used in their experiments are mainly extracted from
the hashtag itself. Hong et al. [11] treated the prediction
problem as a classification task and investigated a wide
spectrum of features including content features derived from
the message, context features (structural features) extracted
from the underlying user network and temporal features
obtained from the observed popularity dynamics. Similar
features have also been investigated in [18] and [8]. Gener-
ally speaking, the context features are more effective than
content features, while the prediction performance can be
further improved when combing the temporal features. For
time series models, Matsubara et al. [19] proposed SpikeM,
which used the self-excited Hawkes conditional Poisson
process to model the power-law relaxation of popularity
dynamics. Despite of its promising predictive power, the
dependence on exogenous factors and the fixed power-law
relaxation function limit its generalization ability.

Recently, there have been pioneering data-driven analysis
of popularity prediction on different kinds of user generated
content, e.g., news articles [3, 26], YouTube videos [1, 7,
15, 21, 25], diggs in Digg [1, 14, 25], posts in Facebook
[5] and papers [23, 29] etc. Focusing on diggs in Digg
and videos in YouTube, Szabo et al. [25] found a high log-
linear correlation existed between the popularity on early
days and later days, and presented three regression models
for prediction. Following [25], Pinto et al. [21] proposed a
multivariate linear regression model which split the training
period into several equal intervals, and predicted the future
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popularity of a video as a linear function of views count in
every interval.

The most close research to ours was conducted by Shen et
al. [23]. They proposed the general framework of reinforced
Poisson process model and applied the model to predict the
future citations of a given paper. Inspired by this study,
in this paper, we proposed a extended reinforced Poisson
process model to characterize the retweeting dynamics.

3. PRELIMINARIES

3.1 Problem Statement
In this work, we aim to model the retweeting dynamics of

a single message in the early stages and use the model to
predict its popularity in the future. For a given message m,
we use the number of “retweets” to measure its popularity.
Then, we sort all its retweets according to their post time
in ascending order, forming a chain of messages. The post
time for the kth retweet is denoted by T m

k . Specially, we
use T m

0 to denote the post time of the original message.
The post time T is measured in Unix timestamp which is
a number indicating the seconds which have elapsed since
1970-01-01 00:00:00, UTC. Further, we define the age of
kth retweet tmk as the elapsed time from T m

0 , which can be
calculated by tmk = T m

k −T m
0 . The number of retweets at age

t is denoted by N(t). During the modeling and prediction
process, following the definition in [25], we call reference
time Tr the time when we intend to predict the popularity
of a message whose age with respect to the post time is Tr.
Also, by indicator time Ti we refer to the age the message
when we perform the prediction, namely that how long we
can observe the retweeting history in order to extrapolate.
Generally, we have Ti < Tr. Intuitively, Ti measures the
length of the training period for the model. The retweeting
dynamics of message m up to Ti is characterized by a set of
time moments {tmk }(1 ≤ k ≤ nm) when each retweet arrives,
where nm is the total number of retweets in this training
period. Formally, the prediction problem can be described
as: for a message m, given its retweeting dynamics {tmk }
up to the indicator time Ti, predicting its popularity at the
reference time Tr.

3.2 Reinforced Poisson Process Model
The reinforced Poisson process (RPP) model was first

proposed in [29, 23] to model the stochastic popularity
dynamics for items in a complex evolving system. The model
captures three key ingredients simultaneously: (i) fitness of
an item, characterizing its inherent competitiveness against
other items; (ii) a general temporal relaxation function
corresponding to the aging in the ability to attract new
attention; (iii) a reinforcement mechanism characterizing
the well-known “richer-get-richer” phenomenon. In the
following, with respect to the retweeting dynamics on
microblogging platforms, we give a more general definition
of RPP model.

Given a message m, its retweeting dynamics {tmk } up to
Ti can be modeled as reinforced Poisson process which is
characterized by the rate function λm(t, k) as

λm(t, k) = cmfm(t)rm(k) (1)

where cm is intrinsic attractiveness of the message, fm(t) is
the general temporal relaxation function which characterizes

the aging effect, and rm(k) is the general reinforcement func-
tion depicting the “richer-get-richer phenomenon”. Instead
of defining rm(k) to be the number of retweets as in [29, 23],
we generalize the reinforcement function to be any piecewise
constant function which is defined on number of retweets
k, i.e., during the time interval between kth and (k + 1)th
retweet, rm(k) stays unchanged.

Next, we describe the modeling process of general RPP
model. Given the (k − 1)th retweet arrives at tmk−1, the
probability that the kth retweet arrives at tmk follows

p1(t
m
k |tmk−1) = cmfm(tmk )rm(k − 1)e

− ∫ tmk
tm
k−1

cmfm(s)rm(k−1)ds

(2)
while the probability that no retweet arrives between tmnm

and Ti is

p0(Ti|tmnm
) = e

− ∫ Ti
tmnm

cmfm(s)rm(nm)ds
(3)

The RPP model assumes that retweets from different
time intervals are statistically independent. Hence by
incorporating Equation 2 and Equation 3, the likelihood of
the observing retweeting dynamics {tmk } up to Ti follows

L = p0(Ti|tmnm
)

nm∏
k=1

p1(t
m
k |tmk−1) (4)

By taking logarithm, we can get the log-likelihood function
� as

� = lnL = ln
(
p0(Ti|tmnm

)

nm∏
k=1

p1(t
m
k |tmk−1)

)

= nm ln cm +

nm∑
k=1

(
ln fm(tmk ) + ln rm(k − 1)

)
− cmXm

(5)

where

Xm =

nm∑
k=1

∫ tmk

tm
k−1

fm(s)rm(k − 1)ds+

∫ Ti

tmnm

fm(s)rm(nm)ds

(6)

4. MODEL
In this section, we first give the specific forms for temporal

relaxation function and reinforcement function with respect
to retweeting dynamics. Then we describe the hourly varia-
tion of user activity and the proposed time mapping process.
Lastly, we give a detailed description for the proposed model,
including the modeling, learning and prediction process.

4.1 Temporal Relaxation Function
As shown in the rate function (Equation 1), the retweeting

dynamics of a message is controlled by three independent
forces, which are difficult to separate from each other.
Hence to determine the specific form of temporal relaxation
function, we need to control the other factors, isolating
the temporal decay. Specifically, we group messages with
same fitness c and same reinforcement r(k), and look at
the time when they were retweeted again. Since we do not
know c beforehand, we roughly consider messages which are
posted in a fixed time period and receive the same number
of retweets in one hour after being posted as having the
same fitness. Note that the reinforcement r(k) is a function
of the number of retweets k, by selecting messages with
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Figure 1: Empirical validation of power-law decay

same retweet number, the reinforcement is also controlled.
Therefore we selected messages posted between 10am and
11am with fixed cumulative retweet number N in the first
hour after being posted, and tracked the moment when
their retweets number changed from N to N + 1. Then
we measured Δt in minutes, i.e., minutes passed when
N → N + 1 took place. Note that all values of Δt are
greater than 60 since the messages have been posted for
more than 1 hour before the (N + 1)th retweet happens.
Hence, to illustrate the distribution of Δt more clearly, we
subtract 60 from Δt given that subtracting a constant from
a random variable will not change its distribution. Then
we show P (Δt|N) when N is 10 and 20 in Figure 1. We
can easily find that the temporal relaxation function is best
approximated by a power-law function

fm(tk) = t−γm
k (γ > 0) (7)

The power-law decay of influence has also been reported in
blogs [20] and videos [6].

4.2 Reinforcement Function
In this section, we study the reinforcement mechanism in

retweeting dynamics and address the following issues: (1)
whether the reinforcement mechanism exists in retweeting
dynamics, i.e., whether the previously retweets can trig-
ger more subsequent retweets? (2) if the reinforcement
mechanism does exist, how to model it? To answer the
first question, we follow the similar method as proposed
in [22], which is to measure the preferential attachment
mechanism from the empirical data, one keeps a constant
time window and looks at the growth of degrees as a
function of existing degree. Similarly, here in the analysis
of retweeting dynamics, we first fix a constant time window,
and then measure the number of retweets that a message
received before and within this time window. Specifically,
given a fixed time window, we use Φ to denote the number of
retweets that each message received before this time window,
and use φ to measure the average number of retweets for
each message with Φ retweets received in this time window.
In Figure 2, we show how φ varies with Φ when the time
window is fixed to be 10:30am–10:45am (Figure 2(a)) and
10:45am–11:00am (Figure 2(b)). Generally speaking, for
both examined time window, φ is linearly proportional to
Φ, i.e., φ ∝ Φ. The dashed lines correspond to the best
linear fitting. This is reasonable since this linearity can lead
to a power-law message popularity distribution as shown in
Figure 4. In previous literature [23, 29], a simple linear
function is used to capture this linear reinforcement

rm(k) = k + 1 + ε (8)

where k ≥ 0 and ε denotes the effective number of
retweets which plays the role of prior belief. The linearly
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Figure 2: Empirical validation of reinforcement
mechanism

reinforcement function is defined based on the assumption
that all retweets (including the original message) are created
equally. Therefore, we can rewrite Equation 8 as rm(k) =∑k

j=0 1 + ε, where in the summation
∑k

j=0 1 each retweet
contributes 1 to the reinforcement function as assumed.
However, by further examining Figure 2, we can find that
when Φ grows larger, a large amount of φ fall below the
dashed line, indicating that φ grows slower than linearly
with Φ. One possible reason for this phenomenon is
that the retweets are not created equally and with the
number of retweets grows larger, the contribution of the
subsequent retweets to the reinforcement function become
smaller. Hence, to capture the decay of contribution for
each retweet, we assume that the contribution decay follows
an exponential distribution, i.e., for the jth retweet, the
contribution to the reinforcement function rm(k) is e−αmj ,
where αm > 0. By adding the contribution of all retweets
together, we get the modified reinforcement function as
follows

rm(k) =

j=k∑
j=0

e−αmj + ε =
ε− e−αm(k+1)

1− e−αm
(αm > 0) (9)

where ε = 1 + ε − εe−αm . Henceforth, we call Equation 9
the exponential reinforcement function.

4.3 User Activity and Time Mapping
In this section, we examine another important factor,

user activity, which is not considered by the original RPP
model. To investigate the hourly variation of user activity,
we randomly selected about 10 thousand users from Weibo
and crawled all their messages posted between 2013-07-01
00:00:00 and 2013-07-31 23:59:59, which results in 1.6 millon
messages. We first show the average number of messages
posted during a given hour as a function of time in Figure
3(a). Clearly, we can see that user activity varies over time,
namely that users are highly active during daytime and
inactive in midnight. Hence, depending on the time of day
when messages are posted, the number of initial retweets
that messages get will differ greatly, as illustrated in Figure
3(b), where we show the average number of retweets that a
message receives in the first hour after being posted (blue
curve). As can be expected, messages posted at higher active
periods of a day will on average receive more retweets in the
first hour than messages posted at less active periods. For
example, a message posted at 11am can on average get 25
retweets in the first hour, while it will only get 5 retweets if it
is posted at 4am. Therefore, if we do not eliminate the effect
of user activity variation, we may misinterpret the relative
interestingness of a message only based on the observation
made in a few hours after it has been posted.
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To eliminate the effect of user activity variation, we
introduce the notation of weibo time, where we measure
time not by wall time (seconds), but by the number of
messages that users post on Weibo. To map the wall time
into weibo time, we first use τ and τ̂ to denote the second
in a day, which are measured by wall time and weibo time
respectively. Both τ and τ̂ take values in [0, 86400) where
86400 is the number of seconds in a day. The difference
between them is that τ can only be integer while τ̂ can be
decimal. Then through analyzing the dataset, we get the
average number of messages posted per second M∗ and in
each second Mτ . M

∗ is a constant number while Mτ varies
with τ . To be clear, we show Mτ as a function of τ in Figure
3(c). Obviously, Mτ takes larger value in daytime than in
midnight, which can further illustrate the hourly variation
of user activity. Now, we can define the mapping function g
as

τ̂ = g(τ) =
τ∑

j=0

Mj/M
∗ (10)

The image of mapping function g(τ) is shown in Figure 3(d)
(blue curve). Next, for each original timestamp T in dataset,

we denote the corresponding mapped timestamp as T̂ . To
map from T to T̂ , we first need to transform T into the
corresponding second of day τ∗ by

τ∗ = mod(T + 8 ∗ 3600, 86400) (11)

where mod(a, b) returns the modulus after division of a by b
and 3600 is the number of seconds in an hour. Since Weibo
locates in China, UTC+8 time zone, we need to add 8 ∗
3600 to each T before the modulo operation. Lastly, by
incorporating Equation 11 and Equation 10, we can get the
mapped timestamp T̂ by

T̂ = T − τ∗ + τ̂∗ = T − τ∗ + g(τ∗) (12)

After timestamp mapping, we show the average number
of retweets that a message receives in the first weibo hour
after being post in Figure 3(b) (red curve). As can be seen,
the average retweets number slightly changes over the post
time, indicating that the mapping from wall time to weibo
time can largely mitigate the impact of message’s post time
on its early-stage popularity and eliminate the effect of user
activity variation.

4.4 Modeling Learning and Prediction
In this section, we describe in detail how to model

the retweeting dynamics for a given message under the
reinforced Poisson process framework with power-law tem-
poral relaxation function (Section 4.1) and exponential
reinforcement function (Section 4.2). Also, we show how
to integrate the time mapping process (Section 4.3) into the
reinforced Poisson process framework. In the following, we
describe the model learning and prediction process step by
step, and we start with the input of the model.

Input time moments. As defined in Section 3.1, for a giv-
en message m, its retweeting dynamics can be characterized
by a set of non-decreasing time moments {tmk }, where tmk
denotes the age of the kth retweet and tm0 is the age of the
original message which is 0. The drawback of this definition
is that since the temporal relaxation function t−γm takes a
power-law form, it will be infinity when t = tm0 = 0. To
avoid this, we manually add a constant value t∗ to all tmk .
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Figure 3: User activity variation and Time
mapping

Formally, we redefine tmk as

tmk = T m
k − T m

0 + t∗ (13)

Also, henceforth in the modeling and prediction process,
when we refer to indicator time Ti and reference time Tr,
their values are Ti + t∗ and Tr + t∗ respectively.

Further, to integrate the time mapping function into the
RPP model, we first need to map the original timestamps
{T m

k } into {T̂ m
k } using Equation 12, and then get tmk as

tmk = T̂ m
k − T̂ m

0 + t∗ (14)

Here, we use time series {tmi } up to Ti as the input of the
modeling process. For ease of calculation of the power-law
temporal relaxation function, we measure tmk in hours and
set t∗ = 1 for all the messages. For simplicity and clarity,
henceforth we will omit the superscript m which is used to
represent message m.

Model Formulation. By substituting the power-law
temporal relaxation function Equation 7 and the exponential
reinforcement function Equation 9 into the general rate
function Equation 1, we can get the specific form of rate
function for retweeting dynamics as

λ(tk, k) =
ct−γ

k

(
ε− e−α(k+1)

)
1− e−α

(15)

Then, by substituting Equations 7 and 9 into the general
log-likelihood function Equation 5, we can get the log-
likelihood for the retweeting dynamics {tk} up to Ti as

� = n ln c+

n∑
k=1

(
ln f(tk) + ln r(k − 1)

)
− cX

= n ln
c

1− e−α
+

n∑
k=1

(
ln (ε− e−αk)− γ ln tk

)
− cX

(16)

where

X =

n+1∑
k=1

(t1−γ
k − t1−γ

k−1)(ε− e−αk)

(1− γ)(1− e−α)
(17)
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Figure 4: Popularity distribution

Note that we manually set tn+1 = Ti for the sake of
simplification. It does not mean that the (n+1)th retweets
arrives at Ti.

Parameter Estimation. Here, we denote the optimal
values for parameters {c, γ, α} as {c∗, γ∗, α∗}. For the fitness
parameter c, we can get its optimal value c∗ in closed form
by maximizing the log-likelihood function in Equation 16 as

c∗ = argmax
c

� = n/X (18)

For parameters γ and α, the optimal values can be found
by maximizing the log-likelihood � using the gradient ascent
method. The gradients for each parameter are

∂�

∂γ
= −

n∑
k=1

ln tk − c
∂X

∂γ
(19)

∂�

∂α
= − ne−α

1− e−α
+

n∑
k=1

εe−α + ke−αk

ε− e−αk
− c

∂X

∂α
(20)

where

∂X

∂γ
=

n+1∑
k=1

ε− e−αk

1− e−α

(
t1−γ
k−1 ln tk−1 − t1−γ

k ln tk

1− γ
+

t1−γ
k − t1−γ

k−1

(1− γ)2

)

(21)

∂X

∂α
=

n+1∑
k=1

(t1−γ
k − t1−γ

k−1)(ke
−αk − (k − 1)e−α(k+1) − e−α)

(1− γ)(1− e−α)2

(22)

Following the standard gradient ascent method, update rules
at the jth iteration are shown in the following equations.

γ(j+1) = γ(j) + β1 ·
∂�

∂γ
(23)

α(j+1) = α(j) + β2 ·
∂�

∂α
(24)

where β1 and β2 are the learning rate at each iteration. The
algorithm stops when the change in an iteration is small
enough.

Prediction. With the obtained optimal parameters, i.e.,
c∗, γ∗ and α∗, we can use the model to predict the expected
number of retweets N(t) at any given time moment t.
Incorporating with the rate function of retweeting dynamics
in Equation 15, we treat the prediction task as the following
differential equation

dN(t)

dt
= c∗t−γ∗ ε− e−α∗(N(t)+1)

1− e−α∗ (25)

with the boundary condition N(Ti) = n. By solving this
differential equation, we get the prediction function

N(t) =
(
ln(1 + eY )− Y − ln ε− α∗)/α∗ (26)

where

Y =
εc∗α∗(T 1−γ∗

i − t1−γ∗
)

(1− γ∗)(1− e−α∗)
− (n+1)α∗ − ln (ε− e−α∗(n+1))

(27)

5. EXPERIMENTAL SETUP

5.1 Datasets
Since this paper focuses on modeling the retweeting

dynamics and predicting the future popularity of a given
message on microblogging platforms, we conducted exten-
sive experiments on two datasets of Weibo messages. Each
dataset contains a set of original messages posted during
July 1–31, 2013. For each message, we recorded the post
timestamps for it and all its retweets in one month after
been posted. We adopted two different crawling strategies
and obtained the following two datasets.

• Random: To construct the random dataset, we first
randomly selected 10,000 seed users and crawled all
their original messages posted during July 1–31 2013.
The crawling process produced in total 0.8 million o-
riginal messages. Then we manually removed messages
with more than 20,000 retweets since the crawling
process for their retweets is too time consuming. Also,
messages with less than 50 retweets are removed since
they usually stop receiving more retweets in the first
few hours. Thus we randomly selected 10K messages
from the rest of the crawled messages to construct
the random dataset. In this dataset, the mean and
median values for message popularity are 450 and 210
respectively.

• News: In this dataset, we concentrated on a specific
type of message—news. To begin with, we manually
selected 25 prestigious news accounts and crawled all
their original posts during July 1–31, 2013. Similarly
with Random dataset, messages with retweets number
larger than 20,000 or less than 50 are neglected.
The resulting dataset contains in total 18K original
messages and its statistics is shown in Table 1. As
can be seen, since the number of followers for all these
news account are larger than 1 million, their posted
messages on average gain more retweets than these in
Random dataset. For News dataset, the mean and
median values for message popularity are 529 and 238
respectively.

Since few messages can receive more retweets after been
posted for one month, we use the number of retweets that a
message gets in the first month since posted to measure its
final popularity. We show the distribution of the message
final popularity for both datasets in Figure 4. As can be
seen, both distributions follow power-law.

5.2 Comparison Methods
To examine the efficiency of our modified RPP models,

two variations of RPP model and two widely used regression
models were introduced for comparison. Specifically, the
comparison methods in our experiments are listed as follows:

• SH [25]: the linear regression method for logarithmic
popularity, which is proposed by Szabo and Huber-
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Table 1: Statistics of News Dataset
Account Name A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

# Follower1 3.8 9.2 10.8 3.3 11.1 5.1 4.2 9.2 7.2 9.4 5.9 6.0 6.3
# Message 1062 232 1164 77 1373 239 301 1246 1519 672 318 922 577

Avg. # Retweet 113.3 653.8 741.1 170.0 331.4 453.8 339.4 797.6 315.8 234.7 323.3 380.4 751.7

Account Name A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25
# Follower 3.7 9.4 3.8 9.6 0.7 4.8 5.9 16.0 1.4 20.8 22.2 5.6
# Message 1843 1922 158 178 693 1685 1103 1143 383 1381 972 830

Avg. # Retweet 118.1 143.1 772.3 1479.5 42.0 410.1 362.1 378.9 499.8 1543.3 1887.4 168.7
1 # Follower is measured in million.

man. The SH model is represented by

lnN(Tr) = a1 lnN(Ti) + a0 (28)

• ML [21]: the multivariate linear regression model.
The training period [0, Ti] is split equally into p
intervals and the number of retweets received in each
interval is seen as popularity deltas. The ML model
predicts the popularity of a message at Tr as a linear
function of p popularity deltas. Here, we set p = 6.

• LL [23]: RPP model with a log-normal relaxation
function as in Equation 29 and a linear reinforcement
function as in Equation 8. This model has been used
to modeling the citation dynamics.

fm(t;μm, σm) =
1√

2πσmt
e
− (ln t−μm)2

2σ2
m (29)

• PL: RPP model with a power-law relaxation function
as in Equation 7 and a linear reinforcement function
as in Equation 8.

• PE: RPP model with a power-law relaxation function
as in Equation 7 and an exponential reinforcement
function as in Equation 9.

Note that we do not employ the LE model, i.e. RPP model
with a log-normal relaxation function and an exponential
reinforcement function, for comparison since the modeling
and prediction process for it is far too complicated to be
implemented. Moreover, the input for the RPP models can
be with or without the time mapping as in Equation 12. In
order to distinguish them, we add TM to each RPP models’
name. The time mapping version of RPP models applied for
comparison consist of LLTM, PLTM and PETM.

5.3 Evaluation Metrics
The same as in [23], we use Mean Absolute Percentage

Error (MAPE) and Accuracy to evaluate the performance
of all the prediction models. Let Nm(t) be the real number

of retweets for message m up to time t, and N̂m(t) be the
predicted number of retweets. The MAPE measures the
average deviation between predicted and real popularity
over an aggregation of messages. For a dataset of M
messages, the MAPE is defined as

MAPE =
1

M

M∑
m=1

∣∣∣∣ N̂m(t)−Nm(t)

Nm(t)

∣∣∣∣ (30)

The Accuracy measures the fraction of messages correctly
predicted for a given error tolerance ζ. It is defined as

Accuracy =
1

M

M∑
m=1

I

[∣∣∣∣ N̂m(t)−Nm(t)

Nm(t)

∣∣∣∣ ≤ ζ

]
(31)
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Figure 5: Prediction results for different models

where I[X] is an indicator function which returns 1 if the
statement X is true and 0 otherwise. Here, we set the
threshold ζ = 0.1 in this paper.

6. EXPERIMENTAL RESULTS
In this section, we first report extensive experimental

results on both Random and News datasets to validate the
effectiveness of our proposed PE and PETM models. Then
we give detailed analysis of the model parameters.

6.1 Prediction Results
We begin our analysis by comparing the prediction per-

formance of different models on Random and News datasets.
Specifically, by fixing the indicator time Ti to be 1, we
evaluate the prediction performance of our proposed PE and
PETM models as well as four comparison models including
SH, ML, LL and LLTM, with reference time Tr varying
from 2 to 24. The parameter ε is set to be 10 for all RPP
models. Figure 5 shows the comparison results. Generally
speaking, the proposed PETM model can always achieve the
best prediction performance for each Tr on both datasets.
When removing the time mapping process, the PE model
can also show better performance than the other four models
on Random dataset as shown in Figure 5(a) and 5(c).
However, on News dataset in Figure 5(b) and 5(d), the
PE model shows worse performance than the other models
except ML model in terms of MAPE when Tr is smaller
than 10, and it begins to show better performance when
Tr grows larger. That indicates the PE model can well
predict the long-term popularity of a given message but it
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Figure 7: Popularity Correlation

cannot well capture the early evolution of the retweeting
dynamics. Also, by comparing LL and LLTM models
with PE and PETM models, we find that the performance
of PE models are better than LL models in terms of
both measurements on both datasets and the superiority
increases with Tr, which means the proposed PE models
are more appropriate to model the retweeting dynamics
on microblogging platforms. For the other two baseline
methods, SH model performs better than LL models in
terms of MAPE and ML model shows the worst performance
on both datasets. Both of them are regression method and
try to capture the correlation between the early popularity
and future popularity. The ML model works linearly and the
SH model works in a logarithmic manner. As can be seen
from Figure 7, the early popularity and future popularity is
logarithmically correlated. That explains why the SH model
can yield a moderate MAPE value while the ML model
cannot achieve a better prediction performance. However,
both of them show poor performance in terms of Accuracy.
We do not show the accuracy for these two method since
they are all equal to zero when Ti ≥ 2.

Further, we carried out extensive experiments on News
dataset to examine the following issues: (i) the prediction
performance of different RPP models when Ti varies; (ii) the
effect of Ti on the prediction performance of RPP models;
(iii) the effect of time mapping process on the prediction
performance of RPP models. To be specific, we apply a
series of RPP models, including LL, PL and PE models, with
and without the time mapping process, on News dataset
with the indicator time Ti varying from 1 to 8. Since most
messages in dataset stop receiving more retweets after being
posted for 24 hours, we fix the reference time Tr to be 24
to check the ability for different models in predicting the
popularity of a message. We use MAPE to measure the
prediction performance and set the parameter ε again to be
10. The experimental results are shown in Figure 6.

First, we examine the prediction performance of different
RPP models when Ti varies. For fair comparison, we
compare the performance of RPP models with and without
the time mapping process separately. As can be seen from
Figure 6, for models without time mapping process, the PE
model performs the best on the entire range of Ti, and
the PL model shows the worst performance. The same
observation can be made for models with time mapping
process, except that when Ti = 2 and 3, the performance
of PETM is slightly worse than LLTM. Generally speaking,
the superior predictive power of PE models indicates that
the retweeting dynamics can be better characterized by
integrating the power-law temporal decay function with
the exponential reinforcement function. Also, we can find
that the exponential reinforcement function plays a very
important role in PE models since when the reinforcement
function is replaced by a linear function, as in PL models,
the prediction performance drops significantly.

Then, we examine the effect of Ti on the prediction
performance of RPP models. Intuitively, Ti is the length
of training period. As shown in Figure 6, for all RPP
models, the MAPE decreases as Ti increases, indicating that
increasing the training period can improve the prediction
performance for all the models. However, we can also
see that the rate at which MAPE declines slows down
quickly, e.g., the rate of decline for PETM model drops
from 26.9% at Ti = 1 to 10.7% at Ti = 8. This means the
marginal gain for performance improvement diminishes with
the increasing of the training period. This is caused by that
the amount of training data added to the model decreases
as Ti increases, namely that, when Ti becomes larger, the
number of retweets that a message receives in the Tith hour
is generally smaller than it receives in the (Ti − 1)th hour.
Though Ti is increased by one hour at each time, the amount
of training data does not grow proportionally.

Finally, we examine the effect of time mapping process
on the prediction performance of all models. As we can
see from Figure 6, for a fixed Ti, comparing with models
without the time mapping, the MAPE drops significantly
when adding the time mapping process to each model.
This result confirms that the use activity variation can
affect the retweeting dynamics and harm the performance
of prediction models. By integrating the time mapping
process to each prediction model, we can eliminate the
effect of use activity variation and improve the prediction
performance. Moreover, we observe that when Ti grows
larger, the decrease in MAPE becomes more evident for
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all models. The reason for this result is that the effect
of user activity variation becomes more obvious with the
increasing of Ti. To be more clear, in Figure 8 we show
the variation of mapped Ti with the posted time of message
varying from 1h to 24h. As we can see, the magnitude of
change for the mapped Ti becomes larger when Ti increases.
For example, the minimum value and maximum value of the
mapped Ti are 0.09 and 1.54 when Ti = 1, while they are
2.00 and 9.65 when Ti = 7. That means, with the length
of training period grows larger, the effect of user activity
variation becomes more evident. Hence, the improvement
in prediction performance by integrating the time mapping
process becomes more obvious. To sum up, the experimental
results certify the effectiveness of the proposed time mapping
process.

6.2 Analysis of Model Parameters
In our proposed PE and PETM models, there are in

total four parameters {ε, c, γ, α}, where ε is set manually
and the others are derived from the model learning process.
In this section, we first examine the effect of parameter ε
on the prediction performance of the proposed models, and
then investigate the inherent characteristics of the learned
parameters.

As defined in Section 4.2, the parameter ε is the effective
number of retweets which plays the role of prior belief.
Here, to examine the effect of ε, by fixing Ti = 1 and
Tr = 24, we conducted experiments on News dataset to
check the prediction performance of LL, LLTM, PE and
PETM models with ε = 5, 10, 15, 20. The results are
shown in Table 2. As can be seen, we can draw the
similar conclusion as in [23] that decreasing ε can reduce
MAPE for all four models. Since a larger ε implies a
weaker role of the reinforcement mechanism in RPP models,
this result indicates the disparity in retweet numbers is
appropriately captured by the reinforcement mechanism.
Moreover, we find that if ε is too small, e.g. ε = 5, the
MAPE becomes larger again. This result implies that ε
should not be set too small since it balances the strength
in the reinforcement mechanism. Overall speaking, the
experimental results certify the importance of reinforcement
mechanism in modeling the retweeting dynamics.

Further, taking PETM model on News dataset as an
example, we show the distribution of the learned parameters.

Table 2: Effect of prior number of retweets ε

Parameter
Methods1

LL LLTM PE PETM
ε = 5 0.2324 0.2286 0.2109 0.1944
ε = 10 0.2274 0.2230 0.2046 0.1928
ε = 15 0.2848 0.2557 0.2285 0.2168
ε = 20 0.2928 0.2860 0.2510 0.2399

1 The performance is measured in MAPE.
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Figure 9: Distributions of model parameters

Figure 9(a) illustrates the distribution of fitness parameter
c. Clearly we can see that c follows roughly a power-
law distribution, indicating that most of messages share
the similar small fitness value, while only a small portion
of messages are created to be stronger competitive than
others. For the exponent of power-law temporal relaxation
function, parameter γ, as shown in Figure 9(b), most
values of γ lie between 2 and 3. Moreover, we show the
distribution of decay factor α in exponential reinforcement
function in Figure 9(c). Note that, a smaller α indicates a
weaker decay in the reinforcement function. When α = 0,
the exponential reinforcement function degenerates into the
linear reinforcement function. From Figure 9(c) we can find
that the value of α ranges from 0 to 0.1, indicating that the
decay parameter α takes effect in the reinforcement function.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed an extended reinforced Poisson

process model with time mapping process to model the
retweeting dynamics and predict the future popularity for
messages on microblogging platforms. The proposed model
captures a power-law temporal relaxation function which
corresponds to the aging in the ability of a message to
attract new retweets and an exponential reinforcement func-
tion which characterizes the“richer-get-richer”phenomenon.
Both the temporal relaxation function and the reinforcement
function are derived from real data. Further, observing that
the hourly variation of user activity can affect the retweeting
dynamics in the early stages, we introduced the notation of
weibo time and applied a time mapping process to transform
the time moments in the retweeting dynamics into weibo
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time. To evaluate the effectiveness of our proposed model,
we conducted extensive experiments on two Weibo datasets,
with 10K and 18K messages respectively. The experimental
results show that our proposed model outperforms existing
prediction models in popularity prediction problem.

In the future, we will focus on enriching the proposed
model by incorporating more relevant factors, e.g., struc-
tural factors derived from the underlying user network and
the content factors extracted from the message itself.
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