

Deliverable D4.2
Konvertierungskomponente

Autoren: Afshin Amini, Zafar Habeed Syed, Matthias Wauer

Veröffentlichung Vertraulich
Fälligkeitsdatum 31.12.2018
Fertigstellung 08.02.2019
Arbeitspaket AP4
Typ Software
Status Final
Version 1.0

Kurzfassung:
In OPAL werden Metadaten zu offenen Datensätzen aus verschiedensten Quellen gesammelt.
Hierfür wurde in D4.1 bereits ein Vokabular definiert, mit dem die unterschiedlichen Quelldaten
in RDF repräsentiert werden können. Mit Hilfe der Konvertierungskomponente wird die
Transformation aus den Quellformaten (z.B. HTTP, JSON oder RDF) in das Zielformat RDF
umgesetzt. Dieses Deliverable beschreibt die erste Version dieser Komponente, die sich aus
einem entsprechenden Modul in der Crawler-Komponente Squirrel sowie einem separaten
Dienst zur Übersetzung in das OPAL-Vokabular zusammensetzt.

Schlagworte:
Konvertierung, Transformation, RDF, Vokabular

D4.2 - Konvertierungskomponente

Inhalt
Introduction 2

RDF Transformation of Open Data Metadata 2

Conversion Component 5
Transformation into RDF 5
Transformation into the OPAL vocabulary 5

Implementation 6

Conclusions 6

1

D4.2 - Konvertierungskomponente

1 Introduction
OPAL collects and provides metadata from different open data portals. Consequently, the
available metadata coming in from the crawling component can vary regarding its
representation. In order to provide a consistent view on this metadata and allow further
processing, such as interlinking and fusion, OPAL needs to transform the incoming data into a
homogeneous representation.
In Deliverable D1.3 we have designed a high-level architecture of the OPAL system, which
includes a transformation layer which is supposed to provide a data conversion framework to
execute this task. In this deliverable we discuss the functionality and design of this framework.
In addition to that, we describe the current implementation and example use cases for selected
sources.
The work package description of AP4 also suggested that the conversion component should
support providing the OPAL metadata in different representations, such as Turtle and JSON-LD,
depending on the requirements of the APIs and front-end applications. Such different
representations could already be provided by available functionality of common triple stores
used for data storage. Thus, it is currently not necessary to define this functionality for the
conversion component. Depending on further research, if there is a need to transform the OPAL
metadata into different vocabularies (e.g., different DCAT-AP profiles for certain countries), such
functionality may be added in a later iteration of this deliverable.

Note: Throughout the document, we use the following defined prefixes to represent RDF
properties and resources:

Prefix URI

xsd <​http://www.w3.org/2001/XMLSchema#​>

dct <​http://purl.org/dc/terms​>

foaf <​http://xmlns.com/foaf/0.1​>

dcat <​http://www.w3.org/ns/dcat#​>

rdfs <​http://www.w3.org/2000/01/rdf-schema#​>

skos <​http://www.w3.org/2004/02/skos/core#​>

vcard <​http://www.w3.org/2006/vcard/ns#​>

opal <​http://projekt-opal.de​>

2 RDF Transformation of Open Data Metadata
In this section, we provide detailed information about the metadata representation in OPAL. To
represent the metadata information, we use existing DCAT - a vocabulary specification to store

2

http://www.w3.org/2001/XMLSchema#
http://purl.org/dc/terms/language
http://xmlns.com/foaf/0.1/homepage
http://www.w3.org/ns/dcat#dataset
http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2006/vcard/ns#Organization
http://projekt-opal.de/distribution

D4.2 - Konvertierungskomponente

and publish metadata information about catalogs, datasets and distributions in the form of RDF
description. The crawler component query/crawl the metadata information from seed catalogs.
This information is categorized as follows:

1. Catalog: ​This includes information pertaining to the seed catalog. For example, the

homepage of the catalog, publishers, the list of datasets published in the catalog etc. Each
catalog is assigned a URI. These URI’s are generated by appending the unique identifier
(provided by the crawler) of the catalogs to the base URI <​http://projekt-opal.de/catalog​>.
Note that, all the catalogs (URI’s) are represented as the type (rdf:type) of dcat:Catalog -- a
DCAT specification. Additionally, for each catalog, all the metadata information of that
catalog is represented using the following RDF properties,

Metadata RDF-Property Range

Title dct:title xsd:String

Description dct:description xsd:String

Language dct:language dct:LinguisticSystem

Homepage foaf:homepage foaf:Document

Publisher dct:publisher foaf:Agent

Geo-Location dct:spatial dct:Location

Issued dct:issued xsd:dateTime

Modified dct:modified xsd:dateTime

License dct:license URL

Dataset dcat:dataset dcat:Dataset

Format dct:format dct:MediaTypeOrExtent

Table 1. ​RDF representation of Catalog

2. Dataset: ​All the datasets belonging to a catalog are represented as a list of dataset URI’s

using the RDF property dcat:dataset. The dataset URI’s are generated by appending the
unique identifier of the dataset and the base URI opal:dataset and assigned the type
information, the dcat:Dataset. All the metadata information of these datasets such as their
available distributions, last modification date etc., are represented against the
corresponding subject (Dataset) URI by the following RDF properties

Metadata RDF-Property Range

Title dct:title xsd:String

3

http://mcloud.projekt-opal.de/catalog

D4.2 - Konvertierungskomponente

Description dct:description xsd:String

Date Issued dct:issued xsd:dateTime

Date Modified dct:modified xsd:dateTime

Language dct:language dct:LinguisticSystem

Publisher dct:publisher foaf:Agent

Creator dct:creator foaf:Agent

Accrual Period dct:accrualPeriodicity dct:Frequency

Geo-Location dct:spatial dct:Location

Temporal
Period

dct:temporal dct:PeriodOfTime

License dct:license URL

Category dcat:theme skos:Concept

Contact Point dcat:contactPoint vcard:Organization

Landing Page dcat:landingPage foaf:Document

Distribution dcat:distribution dcat:Distribution

Table 2. ​RDF representation of Dataset

3. Distribution: ​Similar to the catalogs and datasets each distribution is assigned a URI by
appending the unique identifier of the distribution (provided by squirrel) and the base URI
opal:distribution. Additionally, the incoming metadata information of the distributions from
squirrel is extracted/queried and is represented as values of the following RDF properties

Metadata RDF-Property Range

Title dct:title xsd:String

Description dct:description xsd:String

Date Issued dct:issued xsd:dateTime

Date Modified dct:modified xsd:dateTime

License dct:license URL

Access URL dcat:accessURL rdfs:Resource

Download URL dcat:downloadURL rdfs:Resource

Table 3:​ RDF representation of Distributions

4

D4.2 - Konvertierungskomponente

3 Conversion Component
Figure 3.1 depicts the conversion component. Prior to converting the datasets into homogeneous
representation, all the metadata from the input portals, also called seed catalogs, is
extracted/queried and stored in the form RDF triples (see 3.a in figure). The representation of
collected data is heterogeneous in nature depending on the vocabulary specification used, for
example mcloud, govdata etc.

3.1 Transformation into RDF
Squirrel has two components (​Analyzer​, ​Sink​) for transforming data from different sources to
RDF and store them in a persisting media.

3.1.1 Analyzer
Analyses the fetched data and extract triples from it, and also it can analyse data from different
input formats (RDF, HTML, HDT). The respective components are as follows:

● RDFAnalyzer - Analyses RDF formats.
● HTMLScraperAnalyzer - Analyses and scrapes HTML data base on Jsoup selector-syntax.
● HDTAnalyzer - Analyses HDT binary RDF format.

Depending on the type, the Analyzer takes as input a configuration file. The configuration files
contain mappings of data or HTML fields and their corresponding RDF properties. A list of
configuration files are ​here​. The Analyzer component generates a unique identifier for each
dataset. The extracted data is stored against the identifier in the form of RDF triples using the
RDF properties from the configuration files.

3.1.2 Sink
Responsible for persisting the collected RDF data, and can be one of the follows:

5

https://github.com/dice-group/Squirrel#analyzer
https://github.com/dice-group/Squirrel#sink
https://github.com/projekt-opal/squirrel-portals-config

D4.2 - Konvertierungskomponente

● FileBasedSink​ - persists the triples in NT files,
● InMemorySink - persists the triples only in memory, not in disk (mainly used for testing

purposes).
● HdtBasedSink - persists the triples in a HDT file (compressed RDF format -

http://www.rdfhdt.org/​).
● SparqlBasedSink​ - persists the triples in a SparqlEndPoint.

3.2 Transformation into the OPAL vocabulary
As shown in Figure 3.1, the conversion component takes as input the metadata information from
various catalogs collected and published by the Squirrel and converts it into homogeneous
representation based on the OPAL specifications described in Section 2. Initially, the conversion
component is provided with the list of seed catalogs. For each catalog, the conversion
component query all the metadata information of the catalog provided by the Squirrel. A URI is
generated for each catalog and all the metadata information related to the catalog is stored
against the generated URI. After a catalog is created all the datasets belonging to the catalog are
transformed into OPAL specification and all the information stored in an RDF store. This process
is carried out in the following three stages,

Gathering Dataset Information​: To do this, the conversion component queries the list of datasets
for each catalog (see DataSetFetcher module in Fig 3.1). For each dataset, an RDF graph is
constructed by querying all the metadata information of the dataset and its distributions. Note
that, at this stage the dataset contain information according to the vocabulary specifications of
the source catalog. After the graph is constructed, it is then passed to Converter component for
further processing.

Transform Dataset Information​: The converter module takes as input the dataset graph
generated by the DataSetFetcher and generates a new dataset graph containing the information
as per OPAL vocabulary specifications. As a first step, a URI is generated for the new dataset by
querying the unique identifier of the input dataset graph and appending it to the base URI for the
dataset as described in Section 2. All the metadata information from the input dataset graph is
extracted and stored against the newly generated URI using the RDF properties described in
Section 2. Similar to the dataset, new URI’s are generated for each distribution of the dataset by
querying the identifier of distributions from the input dataset graph. All the metadata
information of distributions are stored against their corresponding newly generated URI’s. All
the URI’s of distributions are linked and stored against the dataset URI using the RDF property,
dcat:distribution to form the new dataset graph.

Writing to Triple Store​: The triple store writer (see TSWriter in figure) module takes as input the
transformed datasets generated by the converter. All the datasets collected are stored in an RDF
store. In OPAL, we use Apache Fuseki to store and query metadata of the datasets.

4 Implementation

In OPAL, the implementation of the conversion component is carried out using Spring Boot -- an
open-source Java based framework used to create stand-alone spring applications that are ready

6

http://www.rdfhdt.org/
http://www.rdfhdt.org/

D4.2 - Konvertierungskomponente

to be run. The application can be started by providing minimal configuration information. The
configuration includes the list of input catalogs, information source RDF triple store containing
the crawled information by Squirrel and the target RDF triple for writing the converted datasets.
In its current form, the DatasetFetcher module is designed to run sequentially, i.e., one catalog
at a time. This process will be parallelized in the future releases. The converter module is
implemented to handle conversion of datasets parallely. Finally, the TSWriter module carries out
the writing operation in batches where each batch contain a collection of pre-defined number of
datasets. The size of batch can be easily configured based on the available resources or the size
of catalog. The component is open-source and is available at
https://github.com/projekt-opal/convertion​ .

5 Conclusions

In this deliverable document, we described the working and implementation of conversion
component. The conversion component transforms datasets crawled and collected by the
Squirrel from heterogeneous sources into uniform representation. To do this, the conversion
component make use of existing vocabularies. This document present in detail the vocabularies
used in OPAL.

The first version of conversion component is implemented in Java and bundled into a docker
image. The process of transforming incoming datasets is partially parallel. In the future releases,
we will focus on enhancements and to fully make the process parallel.

7

https://github.com/projekt-opal/convertion

