

Deliverable D4.3
Prototype index structures and entity
recognition

Author: Caglar Demir
Reviewer: Adrian Wilke

Veröffentlichung Öffentlich
Fälligkeitsdatum 30.06.2019
Fertigstellung 02.07.2019
Arbeitspaket AP4
Typ Software Documentation
Status Final
Version 1.0

Abstract:
This deliverable describes the current architecture and configuration of the OPAL search engine
and related index structures for performant retrieval of metadata of datasets in OPAL.

Schlagworte: ​Elasticsearch, index structures, data storage

D4.3 - Prototype index structures and entity recognition

Content
Introduction 2

Requirements 2

Elasticsearch as a storage solution 3

Related works 4
Entity recognition 4
Linguistic ambiguities 4

Customization 4

Evaluation 6

Conclusions and Future work 7

References 7

1

D4.3 - Prototype index structures and entity recognition

1 Introduction

One of the primary goals of OPAL is to extract metadata of datasets from different catalogs and
enable easy access to Open Data as specified in Deliverable D1.3 and D4.1. To accomplish these
tasks, Deliverable D4.2 highlighted the need of unifying multi formatted datasets. This document
aims at defining and implementing a prototype for the storage and retrieval of such extracted
and formatted metadata of datasets. Given the existence of extracted large amounts of metadata
in the form of RDF triples, an appropriate data storage solution carries great importance at
efficiently storing and retrieving RDF triples. Hence, efficient storage and retrieval of RDF data
enables easy access to Open Data.

In this work, we devised a storage solution for the storage and retrieval of RDF data. To this end,
we firstly stipulate desired properties of a storage solution in Section 2. Consequently, we
investigated several technologies that might facilitate accomplishing the task. Section 3
introduces the preferred technology for the storage solution along with the justification of such
decision. In Section 4, we evaluate the performance of our new prototype of RDF Triplestore.
Section 5 concludes this document and elaborates on future work.

2 Requirements

In this section we define the properties of desired storage solution. It must satisfy the following
requirements:

● Scale to store/index large RDF data
● Achieve fast retrieval of RDF data
● Facilitate complex queries

Such requirements are essential for any database systems. The nature of extract metadata of
datasets from different catalogs puts constraints on the type of database system. ​Traditional SQL
databases are sufficient for the storage and retrieval of structured data. However, RDF data
fundamentally differs from the tabular data as it allows ​structured and semi-structured data to
be mixed, exposed, and shared across different applications. Hence, SQL databases are not
sufficient to store/retrieve data consisting of structured and semi-structured data. ​For instance,
DCAT [1] is an RDF vocabulary designed to facilitate interoperability between metadata catalogs
published on the Web. Figure 1 illustrates the underlying structure of data catalogs and the
contained data.

2

D4.3 - Prototype index structures and entity recognition

 Figure 1: DCAT schema [1]

3 E​lasticsearch as a storage solution

The nature of extracted metadata of datasets convinced us to use a technology/engine that
facilitates full-text search and structured search while performing such operation i​n real-time.
To this end, we employ Elasticsearch as the desired storage solution. In this section, we
introduce Elasticsearch and its usage as the storage solution in OPAL.

Elasticsearch is an open-source, RESTful, distributed search and analytics engine built on
Apache Lucene. Since 2010, Elasticsearch has quickly become the most popular search engine,
and is commonly used for log analytics, full-text search, security intelligence, business analytics,
and operational intelligence use cases [2]. Importantly, Elasticsearch offers various operators to
be performed in near real-time. Such operations includes reading/writing data, full-text-search
and so forth [3]. Figure 2 illustrates three main reasons of utilizing Elasticsearch as the storage
solution in OPAL.

3

D4.3 - Prototype index structures and entity recognition

Figure 2: Elasticsearch characteristics [4]

Elasticsearch enables to store extracted metadata of datasets as documents/objects while the
contents of each document being index. Indexing the contents of each document makes each
content searchable. To elucidate such important feature please consider the following scenario:
Assume we have a list of extracted metadata of datasets where each item corresponds to
dcat:Dataset table in Figure 1. Each item in such list coincides with a document in Elasticsearch.
Therefore, we store each document (the metadata) in Elasticsearch and define the contents of
each document (title, description, issued etc). Storing hundreds of thousands of such documents
along with the respective contents occurs in seconds. The act of storing data in Elasticsearch is
called ​indexing​ [3].

4 Related works

4.1 Entity recognition

The recognition and integration of named entities has been integrated to OPAL and is described
in Deliverable D3.3 ​metadata extraction​ [5].

4.2 Linguistic ambiguities

The generation of synonyms into Elasticsearch is described in OPAL Deliverable D7.1
search component​ [6]. It has been integrated using the Elasticsearch ​synonym token filter​ [7].

5 Customization

We designed three index structures for dcat:Dataset, dcat:Distribution and Measurements. The
fields of documents correspond to the respective predicates/properties defined in DCAT. To
store a document in an index structure, we use its URI and ID. As the index structures are
created, we explicitly defined mappings and disabled dynamic indexing. Mapping is the process
of defining how a document and its fields are stored. Mapping carries a great deal of importance
at the retrieval of documents as mapping defines the searchable fields of documents. Dynamic
mapping eases the process of mapping as it automatically detects the fields of document by
indexing document. Therefore, dynamic mapping allows to add new fields (hence make them

4

D4.3 - Prototype index structures and entity recognition

searchable) at indexing time. However this convenience comes with the cost of mapping
explosion [8]. Consequently, we ​created an explicit mappings for each index structure. Explicit
mapping for the Measurements index contains only two fields as seen in Figure 3.

 ​ "mappings": {
 "dynamic":"false",
 "properties": {
 "http://www.w3.org/ns/dqv#isMeasurementOf": {"type": "keyword"},
 "http://www.w3.org/ns/dqv#value": {"type": "text"},
 }
 }

Figure 3: The explicit indexing of Measurements

Figure 4 illustrates the explicit mapping of the mapping of dcat:Dataset.

 "mappings": {
 "dynamic":"false",
 "properties": {
 "http://purl.org/dc/terms/title": {"type": "text"},
 "http://purl.org/dc/terms/description": {"type": "text"},
 "http://www.w3.org/ns/dcat#keyword": {"type": "text"},
 "http://purl.org/dc/terms/issued": {"type": "text"},
 "http://purl.org/dc/terms/modified": {"type": "text"},
 "http://purl.org/dc/terms/publisher":{"type":"keyword"},
 "http://www.w3.org/ns/dqv#hasQualityMeasurement":{"type":"keyword"},
 "http://www.w3.org/ns/dcat#distribution":{"type":"keyword"},
 "http://purl.org/dc/terms/accrualPeriodicity":{"type":"keyword"},
 "http://purl.org/dc/terms/spatial":{"type":"text"},
 "http://purl.org/dc/terms/identifier":{"type":"keyword"},
 "http://xmlns.com/foaf/0.1/isPrimaryTopicOf":{"type":"text"}
 }
 }

Figure 5: The explicit indexing of dcat:Dataset

More details pertaining mappings of index structures and a running example of using
Elasticsearch as a storage solution can be found in the GitHub repository of OPAL [9].

5

D4.3 - Prototype index structures and entity recognition

6 Evaluation

The goal of our evaluation was to measure the runtime performance of Elasticsearch in
comparison to the runtime performance of TripleStore implementations like Virtuoso, which is
one of the used OPAL TripleStores. To this end, we analyzed SPARQL queries, which are required
to ensure a performant data flow related to the OPAL frontend. At the construction of
appropriate SPARQL queries, we focused on text queries. A template for typical SPARQL queries
is given in Figure 6. To obtain runtimes, we use the OPAL SPARQL sparql endpoint and an
Elasticsearch instance on an Ubuntu server 18.04 with 126 GB RAM that contains 16 Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz processors. Each text query is performed 3 times. The
respective queries as well as the related arithmetic means of runtimes are presented in Table 1.

PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dct: <http://purl.org/dc/terms/>

SELECT (COUNT(DISTINCT ?s) as ?num)
WHERE
 { GRAPH ?g

{
 ?s a dcat:Dataset .

--query below--
}

 }
Figure 6: SPARQL query template

Query Virtuoso runtime
in seconds

Elasticsearch Runtime
in seconds

?s dct:title ?x .
FILTER CONTAINS (STR(?x),
"Berlin") .

3.1 0.033

?s dct:title ?x .
FILTER CONTAINS (STR(?x),
"Paderborn") .

4.0 0.003

?s dcat:keyword ?x .
FILTER CONTAINS (STR(?x),
"Bahn") .

6.4 0.026

?s dct:description ?x .
FILTER CONTAINS (STR(?x),
"​Strasse​") .

5.6 0.014

?s dct:description ?x .
FILTER CONTAINS (STR(?x),
"​Construction​") .

5.1 0.032

Table 1: Performed queries

6

D4.3 - Prototype index structures and entity recognition

7 Conclusions and Future work

In this document, we provided the current architecture and configuration of a prototype using
index structures for the storage of metadata of datasets in OPAL. Elasticsearch is employed as a
storage solution that scale to large numbers of metadata of datasets (​documents in the
terminology of Elasticsearch) while allowing flexible queries at retrieval of documents.

In our future work, we will focus on integrating Elasticsearch into the OPAL RabbitMQ pipeline
and aim to improve retrieval quality of documents.

8 References

[1] Fadi Maali, John Erickson: Data Catalog Vocabulary (DCAT). W3C Recommendation
 16 January 2014. ​https://www.w3.org/TR/vocab-dcat/
[2] What is Elasticsearch? – Amazon Web Services.
 ​https://aws.amazon.com/elasticsearch-service/what-is-elasticsearch/
[3] ​Gormley, Clinton and Tong, Zachary. 2015. Elasticsearch: The Definitive Guide.
[4] Elasticsearch. ​https://www.elastic.co/
[5] Adrian Wilke, Michael Röder: OPAL D3.3 Erste Metadatenextraktionskomponente.
[6] Adrian Wilke, Caglar Demir: OPAL D7.1 Suchkomponente.
[7] Elasticsearch Reference 7.2: Synonym Token Filter.
 ​https://www.elastic.co/guide/en/elasticsearch/reference/current/
 ​analysis-synonym-tokenfilter.html
[8] Elasticsearch Reference 7.2: Mapping.
 ​https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
[9] OPAL GitHub repository ElasticRDF. ​https://github.com/projekt-opal/ElasticRDF

7

https://www.w3.org/TR/vocab-dcat/
https://aws.amazon.com/elasticsearch-service/what-is-elasticsearch/
https://www.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-synonym-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-synonym-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://github.com/projekt-opal/ElasticRDF

