

Deliverable D8.1
Portalinfrastruktur

Autoren: Matthias Wauer, Afshin Amini, Adrian Wilke

Veröffentlichung Vertraulich
Fälligkeitsdatum 31.12.2018
Fertigstellung 07.02.2019
Arbeitspaket AP8
Typ Bericht
Status Final
Version 1.0

Kurzfassung:
Dieses Deliverable berichtet über die Auswahl der Plattformwerkzeuge, die für die Umsetzung
des OPAL-Portals genutzt werden. Ausgehend von infrastrukturspezifischen Anforderungen
werden die Vor- und Nachteile von möglichen Lösungsansätzen betrachtet. Daraus werden
Entscheidungen für eine geeignete Plattforminfrastruktur abgeleitet.

Schlagworte:
Datenportal, Infrastruktur, Server

D8.1 - Portalinfrastruktur

Inhalt
Introduction 2

Infrastructure Requirements 2
Requirements from the project proposal 2
Requirements identified during the prototypical infrastructure design 2

Requirements analysis 3
Web portal 3
Additional components developed independently 3
High degree of reliability and resiliency against peak load and attacks 4
Microservice based approach with adaptive deployment of services 4
Flexible automated deployment and management 5
Interfaces between the components based on Semantic Web standards 6
Infrastructure technology can be used during development and runtime 7

Infrastructure Design 7

Conclusions 8

1

D8.1 - Portalinfrastruktur

1 Introduction
In the scope of the OPAL project we are developing a prototypical Open Data portal. In this task,
we discuss different options for providing the necessary infrastructure for providing the portal.
Based on the architecture developed in work package 1, we define and develop platform tools for
creating and managing the necessary portal services. This includes aspects such as deployment,
monitoring, configuration management and platform security.

In this first deliverable, we primarily discuss the requirements and potential solutions to the
portal infrastructure management.

2 Infrastructure Requirements
Looking at the consolidated requirements in D1.1, there is only one item addressing the
infrastructure:

- AK5 “Entwicklung eines komponentenbasierten Metadatenportals”: Since the metadata
portal development should be component-based, the infrastructure must be suitable for
managing and deploying such a component-based solution.

This is to be expected, since these requirements are primarily concerning the functional
requirements of the applications and the portal’s data processing. Hence, further requirements
regarding the portal infrastructure will be extracted from the project proposal and during the
process of defining the infrastructure.

2.1 Requirements from the project proposal
The following requirements have been extracted from the work package 8 description in the
DoW.

1. Web portal based on CKAN and its plugins
2. Additional components developed independently (like in the European Data Portal)
3. High degree of reliability and resiliency against peak load and attacks
4. Microservice based approach with adaptive deployment of services (on local servers or

using cloud services)
5. Flexible automated deployment and management

2.2 Requirements identified during the prototypical infrastructure design
In addition to these previously defined requirements, the following list summarizes those
requirements that have been identified during the process of setting up the prototypical
infrastructure:

6. Interfaces between the components should be based on Semantic Web standards as far
as possible.

7. Infrastructure technology can be used during development and runtime of the portal.

2

D8.1 - Portalinfrastruktur

3 Requirements analysis
In this section, we will discuss the different requirements, potential solutions to them, and
suggest an appropriate approach.

3.1 Web portal
There are very many options for implementing a Web application. Classic approaches include
static pages hosted on a Web server, dynamic Web pages generated by the server (e.g., by
processing HTML form input), and dynamic Web pages generated by client-side code. Static web
pages have largely been replaced due to their limited functionality.
There are many different frameworks and technologies for implementing dynamic Web
applications. Examples include Spring MVC, Django, Rails, and express.js. Most of them support
different options for either server-side or client-side rendering. The primary difference between
them is that server-side rendering generates the view (typically HTML) that is displayed at the
client, while for client-side rendering it provides an API (typically REST), as well as mostly static
view (HTML), styling (CSS) and client-side application code (JavaScript). For the latter, again
there are many different options to choose from, including Angular, Vue.js and ReactJS. Finally,
there are hybrids between these approaches, i.e., server-side rendered pages with elements
generated on the client side.
There are different tradeoffs between these options. While client-side rendering can improve
scalability (less load on the server), it can be an issue for mobile applications because some
JavaScript frameworks pose higher system requirements on the rendering device. Additionally,
search engine optimization (SEO) is an issue with completely client-side rendered Web pages, as
currently only Google executes this code in order to index such Web pages (and it does only in a
second processing attempt).
For the generic portal infrastructure in OPAL, these issues are less of a concern as long as the
development, deployment and monitoring of the respective Web applications can be provided.
However, based on the platform architecture, the Web portal should be built in a two-layer
approach, with separated components for the different APIs and user interfaces. Therefore, a
server-side API in addition to mostly ​client-side rendering in the application layer is suggested.
We also suggest to use a framework building on ​existing well-known standards (HTML, CSS,
JavaScript, Web Components) with ​high performance / low memory footprint (considering the
mobile development) and is ​community-driven for less vendor lock-in, such as ​Vue.js or, with
some limitations, ​ReactJS​.
Note that there is also the approach of serverless Web applications, which separate application
functionalities from actually hosting the application. However, this approach is limited, as the
hosting is only provided by a certain Cloud service provide. This does conflict with the
requirement discussed in Section 3.4.

3.2 Additional components developed independently
In the OPAL Description of Work, we have stated OPAL should extend existing solutions, such as
CKAN, with additional components for the required functionality. Most of the components
defined in the OPAL architecture (D1.3) are already defined in separate layers and, as such, will
be implemented separately from CKAN and its extensions for OPAL. This is particularly necessary
for reused components like LIMES, which are implemented using different tooling (e.g., Java
instead of Python).

3

D8.1 - Portalinfrastruktur

3.3 High degree of reliability and resiliency against peak load and attacks
Achieving high reliability of a Web portal requires a set of measures to be taken into account. For
all critical system components (i.e., networking, data storage, and all user-interfacing
components like Web user interfaces and APIs), the infrastructure must include load balancing
and scaling of the respective components. This might include clustering of the triple store, using
caches, or even hosting the services in two separate computing centers.
However, all of these measures have drawbacks:

● The system architecture is complicated by additional components, such as a load
balancer.

● Higher requirements and cost of required computing hardware.
● Additional network traffic can occur, e.g., because of inter-node traffic in clusters of

message queues or RDF stores, which might also degrade performance.
● Non-trivial testing, monitoring and bug-fixing of, e.g., auto-scaling mechanisms.

While some of these aspects have to be considered separately for each specific components, we
suggest the following general guidelines for OPAL:

● Selection and use of storage and messaging components that support at least
master-slave ​clustering​, preferably with ​declarative discovery​-based cluster formation.

● Processing components have to be provided as ​containers which can be used as services
in, e.g., Docker Swarm for ​horizontal scalability ​(see Section 3.4).

● Clear specification of interfaces which conform to sound ​architectural styles (such as
REST principles for HTTP, or similar architectural styles for, e.g., messaging), in order to
enable effective ​caching etc​.

● Implementation of ​resiliency mechanisms, such as circuit breaker or rate limiter, using
libraries like Hystrix or Resilience4j.

3.4 Microservice based approach with adaptive deployment of services
The use of (micro-)services has become a trend in recent years. Compared to earlier methods
developing monolithic software, there are several benefits to composing software using
components separated by their individual concerns, including:

● Improved maintainability of the different components
● Loose coupling, which makes it easier to replace individual parts of the software
● Independent deployability, which enables individual development and bugfixing of

certain services
● Organization around business capabilities, so the software architecture is driven by use

cases rather than technical concerns

Drawbacks of this approach include increased complexity in testing and deployment, as well as
higher memory consumption. Furthermore, it can be difficult to decide how to decompose an
application into services. This particularly applies to research projects like OPAL. However, the
improved flexibility should help with rapid development of the OPAL portal. Therefore, we
suggest to first develop services according to the architecture (see Deliverable D1.3), which can
then be further ​decomposed as needed​. At first, these services might be relatively large, such as
the interlinking framework, but premature decomposition would distract from the actual goal.

4

D8.1 - Portalinfrastruktur

3.5 Flexible automated deployment and management
Related to the resiliency discussed in Section 3.3, the portal infrastructure is concerned with
deploying all components required for the OPAL portal, and managing the deployed
environments. There are many benefits to automating this deployment task, including faster
deployment of new portal environments and less risk of error in the process. With the increasing
adoption of microservices, there are also many tools available for the implementation of
continuous integration / continuous delivery (CI/CD) workflows. In such a workflow, component
updates are released often, including the executing of unit and integration tests, packaging the
software artifacts, and publishing them in repositories. They can then be used in application
environments (pipelines) for development, staging, and production.
When it comes to rolling out such pipelines, again, there are several technologies available to
support this task. The most basic approach is the use of shell scripts, which only targets part of
the issue and can get increasingly complicated with larger application environments. Tools like
Chef and Puppet can help by providing a repository of such scripts, but these are still non-trivial
to maintain successfully. Again, containers can help by providing a common concept to
managing different components. Also, there are many mature tools that help with the
deployment of container compositions, such as Docker Compose, and managing scaling, such as
Docker Swarm.
In recent years, Kubernetes has become a preferred approach to managing more complex
computing environments. This includes solutions to many issues, such as configuration
management, load balancing, optimizing workloads on cluster nodes, and self-healing. While
this can be very helpful for complex applications in production environments, the primary
drawback is a steep learning curve of Kubernetes concepts and terms.
Therefore, we suggest the following approach: OPAL should use a ​CI/CD approach to developing
the services of the OPAL portal. All components should be made available as ​Docker images​,
which can easily be integrated in a Maven ​build process​. These images should be published on
Docker Hub​. The prototypes (entire portal compositions or subsets, such as a CKAN environment
with the respective dependencies) should be defined declaratively with ​Docker Compose​. With
these artifacts available, more comprehensive solutions can then be ​applied if necessary
(Docker Swarm, Kubernetes)​. 1

On this foundation, it would also be possible to manage complex deployments, spanning
different cloud and on premises infrastructures. This enables a much higher flexibility regarding
future potential deployment requirements for the OPAL portal and components. For example,
Figure 1 shows which components are required to manage an application environment
distributed over different infrastructures.

1 ​https://kubernetes.io/docs/tasks/configure-pod-container/translate-compose-kubernetes/
5

https://kubernetes.io/docs/tasks/configure-pod-container/translate-compose-kubernetes/

D8.1 - Portalinfrastruktur

Figure 1​: Example of a hybrid deployment approach, ​Source: Google Cloud

3.6 Interfaces between the components based on Semantic Web standards
Semantic Web standards have certain drawbacks, including a verbose representation of data
(when comparing typical serialisations like Turtle with, e.g., ProtoBuf), certain limitations of
query language and query optimisation, as well as somewhat intimidating logical foundations.
However, clear semantics are required for communication between components. Explicit
semantics can help provide a trustworthy interface between different components in the OPAL
portal. Therefore, mature ​Semantic Web standards like RDF and SPARQL should be applied for
the interfaces between different components in the OPAL portal, as long as the respective data is
already available in a respective representation. For the implementation of these interfaces,
existing mature ​frameworks​ like Jena and RDF4j should be used.

6

https://cloud.google.com/solutions/heterogeneous-deployment-patterns-with-kubernetes

D8.1 - Portalinfrastruktur

3.7 Infrastructure technology can be used during development and runtime
The tooling that has been discussed above, namely Docker containers and the respective
infrastructure extensions, can be successfully used in both development and runtime
environments. The primary advantage is that existing service images can be distributed via a
repository, so they are readily available and can be executed in a very simple way. This helps with
quickly setting up development and runtime environments in a reproducible way on different
machines, as discussed in the Docker Reference Architecture. In order to streamline the 2

development process, we suggest to use existing mature libraries and tools, such as Spring
Cloud.

4 Infrastructure Design
In this section, we summarize the findings of the previous requirements analysis section in order
to define the portal infrastructure for OPAL.

1. Computing infrastructure
a. One or more server nodes in an on-premises ​or​ cloud environment
b. Docker engine available, node(s) registered in Docker Swarm

2. Service component development

a. Agile development, with gradual application of CI/CD workflow
b. Mandatory automated containerization for each component
c. Service granularity as defined in D1.3, gradual microservice decomposition as

needed 3

d. Interfaces based on Semantic Web standards (RDF, SPARQL, common
serialisations)

e. Frontend development using lightweight, high-performance client-side
rendering; server-side API

3. Application deployment
a. Docker Compose for building the complete prototype application from

components
b. Docker Swarm for horizontal scaling of Docker-based services
c. Potential extensions using Kubernetes (not mandatory, as needed)

4. Non-functional requirements

a. Resilience measures applied, using existing frameworks like Hystrix/Resilience4J
b. Interfaces based on architectural styles like REST to enable/benefit from caching

etc.

Figure 1 shows a high-level overview of the OPAL portal’s infrastructure design. It primarily
focuses on the composition of components and their deployment, while details (such as
resilience and frontend details) have been omitted.

2 ​https://success.docker.com/article/dev-pipeline
3 ​https://microservices.io/patterns/microservices.html

7

https://success.docker.com/article/dev-pipeline
https://microservices.io/patterns/microservices.html

D8.1 - Portalinfrastruktur

Figure 1​: OPAL portal infrastructure design

5 Conclusions
In this deliverable we have specified the portal infrastructure for the development of the OPAL
portal. Based on a analysis of requirements from work package 1, the description of work, and
prior experiences, we have defined guidelines for the infrastructure design. This includes
suggestions for the computing infrastructure, service component development, application
deployment, and further aspects regarding non-functional requirements.

8

